
Adaptive Shells for Efficient Neural Radiance Field Rendering

ZIAN WANG∗, NVIDIA, University of Toronto, Vector Institute, Canada
TIANCHANG SHEN∗, NVIDIA, University of Toronto, Vector Institute, Canada
MERLIN NIMIER-DAVID∗, NVIDIA, Switzerland
NICHOLAS SHARP, NVIDIA, USA
JUN GAO, NVIDIA, University of Toronto, Vector Institute, Canada
ALEXANDER KELLER, NVIDIA, Germany
SANJA FIDLER, NVIDIA, University of Toronto, Vector Institute, Canada
THOMAS MÜLLER, NVIDIA, Switzerland
ZAN GOJCIC, NVIDIA, Switzerland

kernel
size samples

8

24

0

1

outdoor

simulation

tabletop

synthetic

animation

rendered
201fps/4.97ms @ 1080p

bounding
shell

Fig. 1. This work presents an approach for efficiently rendering neural radiance fields by restricting volumetric rendering to a narrow band around the object.
Left: We first fit a dense neural volume using a new spatially-varying kernel that automatically adapts to be large in volumetric regions such as hair or grass,
and small in sharp-surface regions such as skin or furniture. We then extract an explicit bounding mesh of the region to be rendered whose width is determined
by the kernel, and render at real-time rates. Right: the proposed method is general and effective across a wide range of data and well-suited for downstream
applications such as simulation and animation. The face model of the Khady synthetic human shown left is courtesy of texturing.xyz.

Neural radiance fields achieve unprecedented quality for novel view synthe-

sis, but their volumetric formulation remains expensive, requiring a huge

number of samples to render high-resolution images. Volumetric encodings

are essential to represent fuzzy geometry such as foliage and hair, and they

are well-suited for stochastic optimization. Yet, many scenes ultimately con-

sist largely of solid surfaces which can be accurately rendered by a single

sample per pixel. Based on this insight, we propose a neural radiance for-

mulation that smoothly transitions between volumetric- and surface-based

rendering, greatly accelerating rendering speed and even improving visual

fidelity. Our method constructs an explicit mesh envelope which spatially
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bounds a neural volumetric representation. In solid regions, the envelope

nearly converges to a surface and can often be rendered with a single sam-

ple. To this end, we generalize the NeuS [Wang et al. 2021] formulation

with a learned spatially-varying kernel size which encodes the spread of

the density, fitting a wide kernel to volume-like regions and a tight ker-

nel to surface-like regions. We then extract an explicit mesh of a narrow

band around the surface, with width determined by the kernel size, and

fine-tune the radiance field within this band. At inference time, we cast rays

against the mesh and evaluate the radiance field only within the enclosed

region, greatly reducing the number of samples required. Experiments show

that our approach enables efficient rendering at very high fidelity. We also

demonstrate that the extracted envelope enables downstream applications

such as animation and simulation.

CCS Concepts: • Computing methodologies→ Rendering; Shape rep-
resentations; Reconstruction.

Additional Key Words and Phrases: Neural Radiance Fields, Fast Rendering,

Level Set Methods, Novel View Synthesis
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1 INTRODUCTION
Neural radiance fields, which we will refer to asNeRFs, have recently
emerged as a powerful 3D representation enabling photorealistic

novel-view synthesis and reconstruction. Unlike traditional explicit

methods for novel-view synthesis, NeRFs forego high-quality mesh

reconstruction and explicit surface geometry in favor of neural net-

works, which encode the volumetric density and appearance of a

scene as a function of 3D spatial coordinates and viewing direction.

However, the high visual fidelity of NeRFs comes at a great compu-

tational cost, as the volume rendering formulation requires a large

number of samples along each ray and ultimately prevents real-

time synthesis of high-resolution novel views. In tandem, explicit

reconstruction and novel-view synthesis have continued to make

great progress by leveraging advances in inverse rendering and

data-driven priors, but a fidelity gap remains. The goal of this work

is to close this gap by developing a neural volumetric formulation

that leverages explicit geometry to accelerate performance, without

sacrificing quality.

Much recent and concurrent work has likewise sought to improve

the efficiency of NeRF representations and volume rendering. An

important step towards this goal was the evolution from a global

large multi-layer perceptron (MLP) representation [Mildenhall et al.

2020] to local sparse feature fields combined with shallow MLP

decoders [Müller et al. 2022; Sara Fridovich-Keil and Alex Yu et al.

2022]. This resulted in several orders-of-magnitude speed-ups. Com-

plementary research to improve the efficiency of NeRFs proposed

replacing the neural networks by simpler functions such as spheri-

cal harmonics, or baking the volumetric representation onto proxy

geometry that accelerates rendering [Chen et al. 2023; Yariv et al.

2023]. The latter formulation enables especially large speedups and

facilitates real-time rendering even on commodity devices [Chen

et al. 2023]. Yet, doing so compromises the quality as the scene

content is projected onto proxy geometry.

In this work, we instead aim to make NeRF rendering more effi-

cient while maintaining or even improving the perceptual quality.

To this end, we propose a narrow-band rendering formulation that

enables efficient novel-view synthesis, while enjoying the desir-

able properties of the volumetric representation (Figure 1 left). Our
method is inspired by the insight that different regions of the scene

benefit from different styles of rendering. Indeed, fuzzy surfaces

with intricate geometry and complex transparency patterns ben-

efit greatly from exhaustive volume rendering, while conversely,

opaque smooth surfaces can be well—or potentially even better—

represented by a single sample where the ray intersects the surface.

This observation allows us to better distribute the computational

cost across the rays by assigning as many samples as needed to

faithfully represent the ground-truth appearance.

With the introduction of auxiliary acceleration data structures

that promote empty space skipping [Müller et al. 2022], NeRFs can

already render images with a varying number of samples per ray.

Still, there remain many challenges that prevent the current formu-

lations from efficiently adapting to the local complexity of the scene

(Figure 2). First, the memory footprint of grid-based acceleration

structures scales poorly with resolution. Second, the smooth induc-

tive bias of MLPs hinders learning a sharp impulse or step function

occupied
voxels

voxel space-skipping narrow-band rendering (ours)

ray
samples

extracted
band

explicit
mesh

single
sample

Fig. 2. One state-of-the-art approach to accelerate volumetric rendering is
to skip empty voxels, however this still requires multiple samples within
occupied voxels (left). Our approach extracts a narrow band mesh, for which
a single sample at the midpoint is a very good approximation of the surface
(right).

for volume density, and even if such an impulse was learned it

would be difficult to sample it efficiently. Finally, due to the lack of

constraints, the implicit volume density field fails to accurately rep-

resent the underlying surfaces [Wang et al. 2021], which often limits

their application in downstream tasks that rely on mesh extraction.

To remedy the last point, [Wang et al. 2021, 2022a; Yariv et al.

2021] propose to optimize a signed distance function (SDF) along

with a kernel size encoding the spread of the density, rather than

optimizing density directly. While this is effective for improving

surface representations, the use of a global kernel size contradicts

the observation that different regions of the scene demand adaptive

treatment.

To address the above challenges, we propose a new volumetric

neural radiance field representation. In particular: i) We generalize

the NeuS [Wang et al. 2021] formulation with a spatially-varying
kernel width that converges to a wide kernel for fuzzy surfaces,

while collapsing to an impulse function for solid opaque surfaces

without additional supervision. This improvement alone results in

an increased rendering quality across all scenes in our experiments.

ii) We use the learned spatially-varying kernel width to extract a

mesh envelope of a narrow band around the surface. The width of

the extracted envelope adapts itself to the complexity of the scene

and serves as an efficient auxiliary acceleration data structure. iii)
At inference time, we cast rays against the envelope in order to skip

empty space and sample the radiance field only in regions which

contribute significantly to the rendering. In surface-like regions,

the narrow band enables rendering from a single sample, while

progressing to a wider kernel and local volumetric rendering for

fuzzy surfaces.

The experiments of Section 4 validate the effectiveness of our

formulation across several data sets. In addition, the applications of

Section 5 demonstrate the benefits of our representation.

2 RELATED WORK
Synthesizing novel views from a set of images is a longstanding

problem in the fields of computer vision and graphics. The classi-

cal approaches to novel-view synthesis can be roughly categorized

based on the coverage density of the input images. In particular,
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Fig. 3. Overview of the proposed approach. We demonstrate high-fidelity, efficient neural implicit scene reconstruction by efficiently-sampling volumetric
rendering inside of an explicit thin shell, which is automatically fit from visual objectives.

light field interpolation methods [Davis et al. 2012; Gortler et al.

1996; Levoy and Hanrahan 1996] assume that the input views are

sampled densely and close to the target view. When the input views

are sparse, classical methods usually follow a two-stage approach:

In the first stage, they construct a proxy geometry from the images

using a combination of a multi-view stereo pipeline [Schönberger

and Frahm 2016; Schönberger et al. 2016] and point cloud recon-

struction methods [Kazhdan et al. 2006; Kazhdan and Hoppe 2013].

In the second stage, the input images are then unprojected onto the

geometry either directly in terms of RGB colors [Buehler et al. 2001;

Debevec et al. 1996; Waechter et al. 2014; Wood et al. 2000] or, more

recently, latent features [Riegler and Koltun 2020, 2021]. Other lines

of research have developed specialized methods for certain classes

of objects, such as faces (e.g. Bi et al. [2021])—although we show

results on synthetic human and animal data (Figure 1), the approach

presented here is entirely general.

Neural Radiance Fields (NeRFs). NeRF [Mildenhall et al. 2020] have

revolutionized the prevailing paradigm of novel-view synthesis,

by using a neural network to represent the scenes as a volumet-

ric (radiance) field that may be queried at any location to return

the view-dependent radiance and volume density. Mildenhall et al.

[2020] synthesize novel views by querying the radiance field along

the image rays and accumulating the appearance using volume

rendering. The photorealistic quality of NeRF has inspired a large

body of follow-up work. NeRF++ [Zhang et al. 2020] analyzed the

difficulties of NeRF to represent unbounded scenes and proposed a

background formulation based on the inverted sphere representa-

tion. MipNeRF [Barron et al. 2021] addressed the aliasing effects with

an integrated positional encoding. This work was later extended to

unbounded scenes [Barron et al. 2022] by contracting the volume

and using an additional proposal network. [Deng et al. 2022] and

[Niemeyer et al. 2022] tackled the challenging setting with sparse in-

put views and proposed to regularize the volumetric representation

using depth supervision or smoothness constraints and data priors

based on normalizing flows, respectively. NeRF-W [Martin-Brualla

et al. 2021] has shown how NeRF can be extended to unstructured

collections of images captured in-the-wild, by using per-frame learn-

able latent codes to compensate for appearance differences and a

transient embedding to remove dynamic objects. Alternative repre-

sentations to neural fields include point clouds [Kopanas et al. 2021;

Rückert et al. 2021], spheres [Lassner and Zollhöfer 2021], and 3D

Gaussians [Kerbl et al. 2023].

Implicit surface representation. The NeRF formulation has two

main shortcomings when it comes to modeling surfaces: i) Besides

a lack of regularization of the density field, ii) surface extraction has

to be performed at an arbitrary level-set of the density field. In com-

bination, these lead to noisy and low-fidelity surface reconstruction.

However, with small changes in the formulation, implicit represen-

tations combined with volume rendering [Oechsle et al. 2021; Wang

et al. 2021, 2022b; Yariv et al. 2021, 2020; Zhang et al. 2021] still

appear as a promising alternative to classical surface reconstruction

approaches from image data [Schönberger et al. 2016]. For exam-

ple, instead of directly optimizing the density field, [Wang et al.

2021; Yariv et al. 2021] proposed to decompose it into an SDF and a

global kernel size that defines the spread of the density. This allows

for extracting accurate surfaces from the zero-level set of the SDF,

which can also be regularized using the Eikonal constraint. Similar

to NeRFs, implicit surface representations were also combined with

local feature fields and auxiliary acceleration data structures [Li et al.

2023; Rosu and Behnke 2023; Tang et al. 2023; Wang et al. 2022a;

Zhao et al. 2022] with the goal of improved efficiency and represen-

tation capacity. While our method is built on the NeuS [Wang et al.

2021] formulation, our main goal is not to improve the accuracy

of the extracted surface. Instead, we utilize the SDF to extract a

narrow shell that allows us to adapt the representation to the local

complexity of the scene and in turn to accelerate rendering.

Accelerating neural volume rendering. One of the main limitations

of NeRFs is the computational complexity of neural volume ren-

dering which slows down both training and inference. Recently,

various different directions to accelerate NeRFs have been explored.

For example, replacing a global MLP with a (sparse) local feature

field combined with a shallow MLP [Chen et al. 2022; Liu et al. 2020;

Müller et al. 2022; Sun et al. 2022; Yu et al. 2021] or the spherical

harmonics embedding [Chen et al. 2022; Karnewar et al. 2022; Sara

Fridovich-Keil and Alex Yu et al. 2022], partitioning the volume

into a large number of local (shallow) MLPs [Rebain et al. 2020;

Reiser et al. 2021], or using efficient sampling strategies [Hu et al.

2022; Kurz et al. 2022; Lin et al. 2022; Neff et al. 2021], or image-

space convolutions [Cao et al. 2022; Wan et al. 2023]. However, even

the most optimized volumetric representations [Müller et al. 2022]
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are still much slower than pure surface-based approaches such as

NvDiffRec [Munkberg et al. 2022].

To further increase the efficiency of the inference phase, volu-

metric representations can be baked onto a proxy surface geome-

try [Chen et al. 2023; Wan et al. 2023; Yariv et al. 2023] that can be

efficiently rendered using high-performance rasterization pipelines.

An alternative "baking" strategy is to precompute the outputs of

the neural network and store them on a (sparse) discrete grid that

acts as a lookup during inference [Hedman et al. 2021; Reiser et al.

2023]. In this work, we investigate an alternate approach to speeding

up the (volumetric) rendering, by adapting the number of samples

required to render each pixel to the underlying local complexity

of the scene. Note that our formulation is complementary to the

"baking" approaches and we consider the combination of both an

interesting avenue for future research.

3 METHOD
Our method (see Figure 3) builds on NeRF [Mildenhall et al. 2020]

and NeuS [Wang et al. 2021]. Specifically, we generalize NeuS [Wang

et al. 2021] with a new spatially-varying kernel (Section 3.2), which

improves the quality and guides the extraction of a narrow-band

shell (Section 3.3). Then, the neural representation is fine-tuned

(Section 3.5) within the shell that significantly accelerates rendering

(Section 3.4).

3.1 Preliminaries
NeRF [Mildenhall et al. 2020] represents a scene as a volumetric

radiance field that maps a 3D point x ∈ R3 and a viewing direction

d ∈ R3 to the volume density 𝜎 and the emitted view-dependent

color c ∈ R3. This volumetric field is represented by a neural net-

work NN𝜃 (·) with parameters 𝜃 , such that (c, 𝜎) = NN𝜃 (x, d). The
scene can then be rendered along a ray r = o + 𝜏d with origin

o ∈ R3 and direction d ∈ R3 from 𝜏𝑛 to 𝜏𝑓 via standard volumetric

rendering

c(r) =
∫ 𝜏𝑓

𝜏𝑛

exp

[ ∫ 𝜏

𝜏𝑛

−𝜎 (r(𝑧))𝑑𝑧
]
𝜎 (r(𝜏))c(r(𝜏), d)𝑑𝜏 , (1)

which is approximated by numerical integration

c(r) =
𝑁𝑟∑︁
𝑖=1

exp

[
−

𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗

]
(1 − exp(−𝜎𝑖𝛿𝑖 ))c(r, d)𝑖 , (2)

where 𝑁𝑟 denotes the number of samples along the ray r and 𝛿𝑖 is
the distance between two adjacent samples.

To improve geometric surface quality in NeRF-like scene recon-

structions, NeuS [Wang et al. 2021] and VolSDF [Yariv et al. 2021]

propose to replace the learned density 𝜎 by a learned signed distance

field 𝑓 , and then transform 𝑓 to 𝜎 for rendering via a sigmoid-shaped

map. The formulation of NeuS optimizes an SDF (c, 𝑓 ) = NN𝜃 (x, d)
along with a global kernel size 𝑠 that controls the sharpness of the

implied density. To evaluate volume rendering (Equation 2) the SDF

value 𝑓 at x is transformed to a density 𝜎 by

𝜎 = max

(
−

𝑑Φ𝑠

𝑑𝜏
(𝑓 )

Φ𝑠 (𝑓 )
, 0

)
, Φ𝑠 (𝑓 ) = (1 + exp(−𝑓 /𝑠))−1, (3)

dilation

erosion

extracted
shell

levelset

Fig. 4. After fitting an initial SDF and spatially varying kernel, we apply level
set flows to extract an adaptive shell via dilation and erosion. For illustrative
purposes, the adaptive shell is enlarged; in practice it very tightly encloses
sharp surfaces.
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where 𝑓 is implicitly 𝑓 (r(𝜏))
along a ray. Intuitively, a small

𝑠 results in a wide kernel with a

fuzzy density, while in the limit

lim𝑠→0 𝑑Φ𝑠/𝑑𝜏 approximates a

sharp impulse function (see in-

set). This SDF-based formulation

allows for the use of an Eikonal

regularizer during training, which encourages the learned 𝑓 to be

an actual distance function, resulting in a more accurate surface

reconstruction. The relevant losses are discussed in Section 3.5.

3.2 Spatially-Varying Kernel Size
The NeuS SDF formulation is highly effective, yet, it relies on one

global kernel size. In combination with the Eikonal regularization

this implies a constant spread of the volume density across the whole

scene. However, a one-size-fits-all approach does not adapt well to

scenes that contain a mixture of “sharp” surfaces (e.g. furniture or
cars) and “fuzzy” volumetric regions (e.g. hair or grass).
Our first contribution is to augment the NeuS formulation with

a spatially-varying, locally learned kernel size 𝑠 as an additional

neural output that is dependent on the input 3D position x. The
extended network becomes (c, 𝑓 , 𝑠) = NN𝜃 (x, d) (see the imple-

mentation details in Section 4.1). During training, we additionally

include a regularizer that promotes the smoothness of the kernel

size field (Section 3.5). This neural field can still be fit from only

color image supervision, and the resulting spatially-varying ker-

nel size automatically adapts to the sharpness of the scene content

(Figure 7). This enhanced representation is independently valuable,

improving reconstruction quality in difficult scenes, but importantly

it will serve to guide our explicit shell extraction in Section 3.3,

which greatly accelerates rendering.

3.3 Extracting an Explicit Shell
The adaptive shell delimits the region of space which contributes

significantly to the rendered appearance, and is represented by

two explicit triangle meshes. When 𝑠 is large the shell is thick,

corresponding to volumetric scene content, and when 𝑠 is small

the shell is thin, corresponding to surfaces. After the implicit fields
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𝑠 and 𝑓 have been fit as described in Section 3.2, we extract this

adaptive shell once as a post-process.

In Equation 3 the magnitude of the quantity 𝑓 /𝑠 in the sigmoid

exponent determines the rendering contribution along a ray (see

the inset figure in Section 3.1). It is tempting to simply extract

a band where |𝑓 /𝑠 | < 𝜂 for some 𝜂 as the region that makes a

significant contribution to the rendering. However, the learned

functions quickly become noisy away from the 𝑓 = 0 level set, and

cannot be sufficiently regularized without destroying fine details.

Our solution is to separately extract an inner boundary as an erosion

of the 𝑓 = 0 level set, and an outer boundary as its dilation (Figure 4),

both implemented via a regularized, constrained level set evolution

tailored to the task.

In detail, we first sample the fields 𝑓 and 𝑠 at the vertices of a

regular grid. We then apply a level set evolution to 𝑓 , producing

a new eroded field SDF− , and extract the SDF− = 0 level set as

the inner shell boundary via marching cubes. A separate, similar

evolution yields the dilated field SDF+, and the SDF+ = 0 level set

forms the outer shell boundary. We define both level sets separately:

the dilated outer surface should be smooth to avoid visible boundary

artifacts, while the eroded inner surface needs not be smooth, but

must only exclude regions which certainly do not contribute to the

rendered appearance.

Recall that a basic level set evolution of a field 𝑎 is given by

𝜕𝑎/𝜕𝑡 = − |∇𝑎 | 𝑣 , where 𝑣 is the desired scalar outward-normal

velocity of the level set. Our constrained, regularized flow on 𝑓 is

then

𝜕𝑓

𝜕𝑡
= − |∇𝑓 |

(
𝑣 (𝑓0, 𝑠) + 𝜆curv∇ ·

∇𝑓
|∇𝑓 |

)
𝜔 (𝑓 ), (4)

where 𝑓0 here denotes the initial learned

SDF, the divergence term is a curvature

smoothness regularizer with weight 𝜆curv.

The soft falloff 𝜔 (see inset) limits the flow

to a window around the level set:

𝜔 (𝑓 ) = 1

2

(
1 + cos(𝜋 clamp(𝑓 /𝜁 ,−1., 1.)

)
, (5)

with window width 𝜁 . To dilate the level set, the velocity is chosen

to fill all regions with density 𝜎 > 𝜎min for a ray incoming in the

normal direction

𝑣
dilate
(𝑓0, 𝑠) =

{
𝛽𝑑𝜎 (𝑓0, 𝑠) 𝜎 (𝑓0, 𝑠) > 𝜎min

0 𝜎 (𝑓0, 𝑠) ≤ 𝜎min

, (6)

with 𝛽𝑑 as a scaling coefficient. We use 𝜁 = 0.1, and 𝜆curv = 0.01. To

erode the level set, the velocity is inversely-proportional to density,

so that the shell expands inward quickly for low density regions

and slowly for high density regions

𝑣
erode
(𝑓0, 𝑠) = min

(
𝑣max, 𝛽𝑒

1

𝜎 (𝑓0, 𝑠)
)
, (7)

where here we use 𝜁 = 0.05, and 𝜆curv = 0. These velocities lead to

a short-distance flow, and thus a narrow shell where 𝑠 is small and

the content is surface-like. They lead to a long-distance flow and

hence a wide shell where 𝑠 is large and the content is volume-like.

We compute the dilated field SDF+ and eroded field SDF− re-

spectively by forward-Euler integrating this flow on the grid for

dilated
SDF

target scene

eroded
SDF

render
shell

learned
kernel size

learned
SDF

Fig. 5. Given kernel size 𝑠 and SDF 𝑓 learned from Section 3.2 (top), we
apply a erosion and dilation flows to 𝑓 (bottom middle and left) to extract a
narrow shell in which we efficiently render (bottom right). Here, we visualize
each quantity on a 2D slice through a scene. For clarity, we show the fields
only nearby the adaptive shell that is ultimately rendered.

50 steps of integration, computing derivatives via spatial finite dif-

ferences. We do not find numerical redistancing to be necessary.

Finally, we clamp the results SDF− ← max(𝑓0, SDF−) and SDF+ ←
min(𝑓0, SDF+), to ensure that the eroded field only shrinks the level

set, and the dilated flow only grows the level set. The SDF+ = 0

and SDF− = 0 level sets are extracted via marching cubes as the

outer and inner shell boundary meshes M+ and M− , respectively.
Figure 5 visualizes the resulting fields. Further details are provided

in Procedure 1 and 2 of the Appendix.

3.4 Narrow-Band Rendering
The extracted adaptive shell serves as an auxiliary acceleration

data structure to guide the sampling of points along a ray (Equa-

tion 2), enabling us to efficiently skip empty space and sample points

only where necessary for high perceptual quality. For each ray, we

use hardware-accelerated ray tracing to efficiently enumerate the

ordered intervals defined by the intersection of the ray and the

grazing,
mult. samples

narrow hit,
1 sample

1 interval,
mult. samples

miss,
0 samples

in general,
mult. intervals, mult. samples

adaptive shell. Within each inter-

val we query equally-spaced sam-

ples. Our renderer does not re-

quire any dynamic adaptive sam-

pling or sample-dependent termina-

tion criteria, which facilitates high-

performance parallel evaluation.

In detail, we first build ray tracing

acceleration data structures for both

the outer mesh M+ and inner mesh

M− We then cast each ray against the

meshes, yielding a series of intersec-

tions where the ray enters or exits

the mesh, partitioning the ray into

zero or more intervals contained in

the shell (see inset). For each interval
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MobileNerf ours ours, # samplesground truth

Fig. 6. Pure surface-based representations struggle to represent fuzzy sur-
faces such as the tail. On the other hand, our method adapts the narrow
shell to the local complexity of the scene, using a single sample for the
sharp skin surface and up to 16 samples for the tail.

with width𝑤 , a target inter-sample spacing 𝛿𝑠 , and a single-sample

threshold𝑤s, we compute the number of samples as ceil(max(𝑤 −
𝑤s, 0)/𝛿𝑠 ) + 1. We cap the maximum number of samples to 𝑁max,

and equidistantly sample the interval. Note that if the interval has

𝑤 < 𝑤s, a single sample is taken at the center of the interval. When

an interval ends because the ray hits the inner meshM− , we do not
process any subsequent samples, as this represents the interior of a

solid object. Otherwise, we process intervals until the ray exits the

scene or we hit a maximum cap, accumulating the contributions as

in Equation 2.

Note that this procedure can be implemented by first generating

all samples within all intervals, and then performing a single batched

MLP inference pass, which improves throughput. For surfaces, our

narrow-band sampling often amounts to just a hardware-accelerated

ray tracing, followed by a single network evaluation, while for

fuzzy regions it densely samples only where necessary—in either

case, performance is greatly accelerated (Table 1). More algorithmic

details are included in Procedure 3 of the Appendix.

3.5 Losses and Training
We optimize the parameters of our representation in two stages. In

the first stage, we use the fully volumetric formulation described in

Sections 3.1 and 3.2 and minimize the following objective

L = Lc + 𝜆𝑒L𝑒 + 𝜆𝑠L𝑠 + 𝜆nLn (8)

with the weights 𝜆c = 1, 𝜆𝑒 = 0.1, 𝜆n = 0.1, and 𝜆𝑠 = 0.01 for all

experiments. Here Lc is the standard pixel-wise color loss against

calibrated ground-truth images

Lc =
1

|R |
∑︁
r∈R
|c(r) − cgt (r) | (9)

and L𝑒 is the Eikonal regularizer as in [Wang et al. 2021]

L𝑒 =
1

|X|
∑︁
x∈X
( | |∇𝑓 (x) | |2 − 1)2 , (10)

where R and X denote the set of rays and samples along the rays,

respectively. ∇𝑓 (x) can be obtained either analytically [Wang et al.

2021, 2022a; Yariv et al. 2021] or through finite differences [Li et al.

ou
rs

N
eu

S

kernel size rendering samples

Fig. 7. The original NeuS [Wang et al. 2021] formulation uses a single global
kernel size 𝑠 . On complex scenes with varying content, the global 𝑠 value
converges to an average which is too small for volumetric parts , and too
large for sharp surfaces . Instead, our locally varying kernel size adapts to
the scene, in-turn allowing us to reduce the number of samples to a single
sample for sharp surfaces and up to 32 samples for the fern (top right).
NeuS uses a constant 384 samples per pixel (bottom right).

2023; Wang et al. 2023]. We use the latter approach. The loss L𝑠
regularizes the spatially varying kernel size introduced in our for-

mulation for smoothness

L𝑠 =
1

X
∑︁
x∈X
| | log

[
𝑠 (x)

]
− log

[
𝑠 (x + N(0, 𝜀2))

]
| |2, (11)

where N(0, 𝜀2) denotes samples from the normal distribution with

standard deviation 𝜀. Lastly, we incorporate the loss

Ln =
1

|X|
����n(x) − ∇𝑓 (x)

| |∇𝑓 (x) | |2
����
2
, (12)

internal to our network architecture (Section 4.1). Like NeuS, we

will leverage geometric normals as an input to a shading subnet-

work, but we find that predicting these normals internally improves

inference performance vs. gradient evaluation. Ln serves to train

these predicted normals to remain approximately faithful to ones

obtained through the finite differences of the underlying SDF field

∇𝑓 (x) [Li et al. 2023; Wang et al. 2023].

After the implicit field has been fit, we extract the adaptive shell

as in Section 3.3. While initial training requires dense sampling

along rays, our explicit shell now allows narrow-band rendering

to concentrate samples only in significant regions. We therefore

fine-tune the representation within the narrow band, now with

only Lc—it is no longer necessary to encourage a geometrically-

nice representation, as we have already extracted the shell and

restricted the sampling to a small band around the scene content.

Disabling regularization enables the network to devote its whole

capacity to fit the visual appearance, which leads to improved visual

fidelity (Table 4). In Procedure 4 of the Appendix, we also present

the training pipeline with algorithm details.

4 EXPERIMENTS
In this section, we provide low-level details of our implementation

and evaluate our method in terms of rendering quality and efficiency
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on four data sets that range from synthetic object-level Shelly, NeRF-
Synthetic [Mildenhall et al. 2020] and tabletop DTU [Jensen et al.

2014] data, to real-world large outbound scenes MipNeRF360 [Bar-
ron et al. 2022]. For comparisons, we treat Instant NGP [Müller et al.

2022] as our volumetric baseline, due to its balance between high

fidelity and efficiency. In addition, we compare to prior methods that

were optimized either for fidelity [Barron et al. 2021, 2022; Wang

et al. 2021; Yuan et al. 2022] or rendering efficiency [Chen et al. 2023;

Guo et al. 2023; Yariv et al. 2023].

When running NeRF [Mildenhall et al. 2020] and Mip-NeRF [Bar-

ron et al. 2021] on DTU and Shelly, we use the implementation from

Nerfstudio [Tancik et al. 2023]. For other methods and experiment

settings, we use their official implementations.

4.1 Architecture Details
Following the state of the art in neural volumetric rendering, we rep-

resent our neural field as a combination of a feature field and a small

(decoder) neural network. Specifically, we use a multi-resolution

hash encoding [Müller et al. 2022] Ψ(·) with 14 levels, where each

level is represented by a hash-table with 2
22

two-dimensional fea-

tures. The voxel grid resolution of our feature field grows from

16
3 → 4096

3
for Shelly and NeRFSynthetic, and from 16

3 → 8192
3

for the other data sets. The features at each level are obtained

through tri-linear interpolation before being concatenated to form

the feature embedding Ψ(·) ∈ R28. This is further concatenated
with the sample coordinates and input to the geometry network

(𝑓 , 1/𝑠, fgeo, n) = NN
geo

𝜃
( [Ψ(x), x]) which is an MLP with a single

hidden layer and 31→ 64→ 31 dimensions. Apart from the SDF

value 𝑓 and kernel size 𝑠 , NN
geo

𝜃
also outputs a geometry latent fea-

ture fgeo ∈ R26 and the normal vector n ∈ R3 which are combined

with x and the encoded view direction d as input to the radiance

network c = NN
rad

𝜃
( [𝛾 (d), fgeo, n, x]) that predicts the emitted color.

Here, NN
rad

𝜃
is an MLP with two hidden layers and dimensions

48→ 64→ 64→ 3. To reduce the computational cost, we directly

predict the normal vector n with an MLP rather than computing it

as the gradient of the underlying SDF field as done in NeuS [Wang

et al. 2021]. Finally, to encode the input direction d, we use the

spherical harmonic basis up to degree 4, such that 𝛾 (d) ∈ R16. The
dimensions of all layers in both networks and the feature field were

selected for high throughput on modern GPU devices.

4.2 Implementation
The training stage of our method is implemented in PyTorch [Paszke

et al. 2017], while the inference stage is implemented in Dr.Jit [Jakob

et al. 2022]. To achieve real-time inference rates, we rely on the auto-

matic kernel fusion performed by Dr.Jit as well as GPU-accelerated

ray-mesh intersection provided by OptiX [Parker et al. 2010]. While

the inference pass is implemented with high-level Python code, the

asynchronous execution of large fused kernels hides virtually all

of the interpreter’s overhead. Combined with the algorithmic im-

provements described above, we achieve frame rates from 40 fps

(25 ms/frame) on complex outdoor scenes to 300 fps (3.33 ms/frame)

on object-level scenes, at 1080p resolution on a single RTX 4090

GPU. A performance comparison to Instant NGP [Müller et al. 2022]

on four data sets is given in Table 1. Note that in this work, we

focused on inference performance only, and have not yet applied

these performance optimizations to the training procedure. Detailed

pseudo-code is given in Procedures 1, 2, 3 and 4 of the Appendix.

4.3 Evaluation Metrics
In order to evaluate the rendering quality, we report the commonly

used peak signal-to-noise ratio (PSNR), learned perceptual image

patch similarity (LPIPS), and structural similarity (SSIM) metrics. Un-

fortunately, evaluating the efficiency of the methods is less straight-

forward as the complexity of the method is often intertwined with

the selected hardware and low-level implementation details. Indeed,

reporting only the number of frames-per-second (FPS) or the time

needed to render a single framemay paint an incomplete picture. We

therefore additionally report the number of samples along the ray

that are required to render each pixel. While the number of samples

along the ray also does not tell the whole story as the per-sample

evaluation can have different computational complexity, combin-

ing all metrics provides a good assessment of the computational

complexity of the individual methods.

4.4 Shelly Data Set
The NeRFSynthetic data set that was introduced in [Mildenhall et al.

2020] is still one of the most widely used data sets to evaluate

novel-view synthesis methods. Yet, it mainly consists of objects

with sharp surfaces that can be well-represented by surface render-

ing methods [Munkberg et al. 2022], and thus does not represent

the challenge of general scene reconstruction. This motivated us to

introduce a new synthetic data set, which we name Shelly. It covers
a wider variety of appearance including fuzzy surfaces such as hair,

fur, and foliage. Shelly contains six object-level scenes: Khady, Pug,

Kitty, Horse, Fernvase and Woolly. For each scene, we have ren-

dered 128 training and 32 test views from random camera positions

distributed on a sphere with a fixed radius. We are grateful to the

original artists of these models: jhon maycon, Pierre-Louis Baril,

abdoubouam, ckat609, the BlenderKit team, and texturing.xyz.

Table 2 shows quantitative results, while the novel views are

qualitatively compared in Figure 8. Our method significantly out-

performs prior methods across all quality metrics achieving more

than 2dB higher PSNR than Instant NGP. Figure 8 demonstrates

that surface-based rendering methods (MobileNerf) struggle to rep-

resent fuzzy surfaces. On the other hand, our method aligns its

representation to the complexity of the scene. For example, Figure 6

shows that our method represents the skin of the horse as a sharp

surface, while using a wider kernel for its tail, which benefits from

volumetric rendering.

4.5 DTU Data Set
We consider 15 tabletop scenes from the DTU data set [Jensen

et al. 2014]. These scenes were captured by a robot-held monocular

RGB camera, and are commonly used to evaluate implicit surface

representations. We follow prior work [Wang et al. 2021; Yariv et al.

2021] and task the methods to represent the full scene, but evaluate

the performance only within the provided object masks.

Table 2 depicts that our method outperforms all baselines across

all evaluation metrics. Qualitative results are provided in Figure 9.
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Fig. 8. A gallery of results on the test-views of our Shelly data set.
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Table 1. Performance comparisons on all four data sets, measured at 1080p without GUI overhead using an RTX 4090 GPU. Our adaptive sample placement and
mesh-based empty-space skipping technique allows us to outperform Instant NGP without compromising visual fidelity. Note that Instant NGP’s performance
on the DTU data set was hindered by a large number of background samples, and is therefore not necessarily indicative of a real use case: the user may specify a
tighter scene bounding box to focus the samples on the main scene contents.

Ours Instant NGP [Müller et al. 2022]

Sample count ↓ ms/frame ↓ FPS ↑ Sample count ↓ ms/frame ↓ FPS ↑

Shelly 2.07 3.81 262.69 2.89 11.74 85.16

DTU 5.11 6.37 157.00 56.10 123.31 8.10

NeRFSynthetic 1.98 3.56 280.68 3.19 14.20 70.40

MipNeRF360 17.05 27.64 36.18 45.62 93.57 10.69

Table 2. Quantitative results on Shelly data set, DTU data set and NeRFSynthetic data set. We report PSNR, LPIPS and SSIM. Our method achieves better
results across all metrics on Shelly and DTU and comparable results on NeRFSynthetic. Real-time denotes methods that achieve >30FPS at 1080p. On Shelly
and DTU, we run NeRF and Mip-NeRF with Nerfstudio [Tancik et al. 2023], and use official implementation for other methods. Baselines of NeRFSynthetic are
from the original papers. Detailed results for each object/scene are provided in the Supplement.

Shelly DTU NeRFSynthetic
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

offl
in
e

NeRF [Mildenhall et al. 2020] 31.27 0.893 0.157 28.51 0.894 0.183 31.01 0.947 0.081

NeuS [Wang et al. 2021] 29.98 0.893 0.158 28.92 0.913 0.168 / / /

Mip-NeRF [Barron et al. 2021] 32.59 0.899 0.148 28.90 0.900 0.179 33.09 0.961 0.043

Ours (full ray) 34.26 0.932 0.104 33.51 0.901 0.081 32.51 0.962 0.048

re
al
-t
im

e I-NGP [Müller et al. 2022] 33.22 0.922 0.125 31.37 0.932 0.139 33.18 / /

MobileNeRF [Chen et al. 2023] 31.62 0.911 0.129 / / / 30.90 0.947 0.062

VMesh [Guo et al. 2023] / / / / / / 30.70 0.947 0.060

Ours 36.02 0.954 0.079 33.37 0.964 0.077 31.84 0.957 0.056

Different from the Shelly data set, the performance of Ours on the

DTU data set is slightly lower than that of Ours (full ray) in terms of

PSNR. We hypothesize that this is due to the distribution of the cam-

era poses that observe the scene only from a single direction. This

hinders constraining the neural field and hence also the adaptive

shell extraction. The same reason also contributes to a significant

increase in the sample count for Instant NGP (see Table 1).

4.6 NeRFSynthetic Data Set
TheNeRFSynthetic data set introduced in [Mildenhall et al. 2020] con-

tains 8 synthetic objects rendered in Blender and is widely adopted

to evaluate the quality of novel view synthesis methods.

As shown in Table 2, our method can achieve comparable quality

to the state of the art methods Mip-NeRF [Barron et al. 2021] and

I-NGP [Müller et al. 2022], but with a much faster runtime perfor-

mance (Table 1). Our method also achieves better image quality

compared to recent works optimized for rendering efficiency [Chen

et al. 2023; Guo et al. 2023]
1
.

4.7 MipNeRF360 Data Set
The MipNeRF-360 data set [Barron et al. 2022] is a challenging

real-world data set that contains large indoor and outdoor scenes

captured from 360
◦
camera views

2
. The scenes feature a complex

1
Note that VMesh [Guo et al. 2023] also optimizes for disk storage, which is an orthog-

onal direction to this paper.

2
In our evaluation, we exclude the two scenes with license issues: Flowers and Treehill.

central object accompanied by a highly detailed background. To

better represent the background, we follow [Yariv et al. 2023] and

extend our method with the scene contraction proposed in [Barron

et al. 2022] (more details are provided in the supplemental docu-

ment).

Table 3 provides the quantitative results and the qualitative com-

parison is depicted in Figure 10. Our method achieves comparable

performance to other interactive methods. Directly compared to

I-NGP, our proposed narrow-band formulation can reduce the num-

ber of samples by a factor of three, resulting in fivetimes higher

average frame rates at comparable rendering quality. We note that

on this data set, performance and quality depend significantly on

the background, which our approach is not specialized to handle.

4.8 Performance Evaluation
We compare the performance of our method to the most efficient

volumetric baseline, Instant NGP [Müller et al. 2022], in Table 1. To

ensure a fair comparison, we render the same test views for both

methods at 1080p resolution and remove the GUI overhead. The

comparison was run on a single RTX 4090 GPU. Our narrow-band

rendering formulation can efficiently reduce the number of samples

along the ray (up to 10 times) which results in significantly reduced

inference time per frame. On the challenging outbound 360 scenes,

our method already runs at real-time rates. Yet, additional speed-

ups could be achieved by further studying the interaction of our

adaptive sample placement with the spatial remapping employed in

these scenes.
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Fig. 9. A gallery of results on the DTU data set.

Table 3. Quantitative results on the MipNeRF360 data set. We report the
PSNR, LPIPS and SSIM results for each object and compare them to baselines.
Ourmethod achieves a performance comparable to the baselines while being
significantly faster during inference (see Table 1). In our comparison, we
exclude the two scenes with license issues: Flowers, Treehill.

Outdoor scenes Indoor scenes

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

offl
in
e

NeRF [Mildenhall et al. 2020] 22.20 0.485 0.501 26.84 0.790 0.370

Mip-NeRF [Barron et al. 2021] 22.02 0.505 0.484 26.98 0.798 0.361

Mip-NeRF 360 [Barron et al. 2022] 25.92 0.747 0.244 31.72 0.917 0.179

Ours (full ray) 24.30 0.703 0.316 29.04 0.900 0.239

in
te
ra
ct
iv
e I-NGP [Müller et al. 2022] 23.90 0.648 0.369 29.47 0.877 0.273

MobileNeRF [Chen et al. 2023] 22.90 0.524 0.463 25.74 0.757 0.453

BakedSDF [Yariv et al. 2023] 23.40 0.577 0.351 27.20 0.845 0.300

Ours 23.17 0.606 0.389 29.19 0.872 0.285

4.9 Ablation Study
We ablate our design choices on the Shelly data set in Table 4. In

line with our motivation in Section 3.2, the spatially-varying kernel

size provides the required flexibility to adapt to the local complex-

ity of the scene which results in improvement across all metrics.

Using a fixed SDF threshold to extract the band requires seeking a

compromise between an adaptive shell that is too narrow to repre-

sent fuzzy surfaces (threshold 0.02) or an increased sample count

(threshold 0.05). Instead, our formulation can automatically adapt to

Table 4. Ablating our method on the Shelly data set. SV Kernel denotes the
spatially varying kernel as introduced in Section 3.2. Band, fixed denotes
the shell is not adaptive but extracted for a given SDF threshold.

Model PSNR ↑ LPIPS ↓ SSIM ↑ Sample ↓

Ours (full ray, w/o SV kernel) 32.99 0.115 0.921 384

Ours (full ray) 34.26 0.104 0.932 384

Ours (band, fixed ±0.05) 33.83 0.110 0.928 4.51

Ours (band, fixed ±0.02) 31.14 0.136 0.913 2.29

Ours (keep regularization) 34.22 0.085 0.948 1.74

Ours 36.02 0.079 0.954 1.74

the local complexity of the scene leading to higher quality metrics

and lower sample count. As described in Section 3.5, we disable the

regularization terms after shell extraction to devote more capacity

to fit the visual appearance. Comparing Ours (keep regularization)
with Ours, this leads to improved visual fidelity.

In Figure 11, we ablate our method and study how image quality

and runtime change with different sample counts. We vary the sam-

ple step size 𝛿𝑠 in narrow-band rendering (Section 3.4) to produce

varying sample counts, and keep other hyperparameters unchanged.

The PSNR is sensitive to sample counts when the samples are in-

sufficient (0.25×-1×), and the image quality starts to saturate as the

sample counts go higher (1×-4×). In most scenes, the runtime perfor-

mance is approximately linear w.r.t. the sample count. For simpler
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Fig. 10. A gallery of results on the test-views of the MipNerf360 data set.

scenes such as Kitten and Fernvase, smaller sample counts (0.25×-
1×) do not further reduce the runtime due to a mixture of fixed

overheads (e.g. Python interpreter and Dr.Jit tracing) and under-

utilization of the GPU.

5 APPLICATIONS
Our method directly constructs an explicit outer shell mesh M+
which by definition contains all regions of space that contribute to

the rendered appearance. This property has great utility for use in

downstream applications.
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Fig. 11. Ablating the effect of sample count on image quality and runtime
performance. We vary the sample count, and plot the PSNR change (left)
and relative runtime performance (right) compared to the default hyper-
parameters denoted as “1× sample count”. We experiment with six scenes
from the Shelly (fernvase, khady, kitten) andMipNeRF360 (bicycle, garden,
room) data sets.

So far our scenes have represented entirely static content, yet,

the world is full of motion. Cage-based deformation methods have

shown promise for enabling dynamic, non-rigid motion in NeRF and

other volumetric representations [Garbin et al. 2022; Joshi et al. 2007;

Lee et al. 2018; Xu and Harada 2022; Yuan et al. 2022]. The basic idea

is to construct a coarse tetrahedral cage around a neural volume,

deform the cage, and use it to render the deformed appearance

of the underlying volume. Our approach perfectly supports such

techniques, as the outer shell meshM+ guides the construction of a

cage which will surely contain the content.

We first dilate and tetrahedralize the outer meshM+ with Fast-

TetWild [Hu et al. 2020] to produce a tetrahedral mesh that encap-

sulates the scene. This mesh acts as a proxy for performing physics

simulations, animations, editing, and other operations. To render

our representation after deforming the tetrahedral cage, any defor-

mation is transferred toM+ andM− via barycentric interpolation,

using precomputed barycentric coordinates generated as a prepro-

cess. Ray directions are likewise transformed via finite differences.

After the transformation, we proceed with rendering as usual in the

reference space of our representation, as described in Section 3.4.

Note that even in the presence of deformations, the rendering pro-

cess still benefits from our efficient adaptive shell representation,

and is able to efficiently sample the underlying neural volume.

We show two examples of applying physical simulation and an-

imation to the reconstructed objects in Figure 12; please see the

supplemental video for dynamic motion. In the animation example,

we manually drive the motion of plants in a vase according to an an-

alytical wind-like spatial function. Other animation schemes, such

as blend shapes or character rigs could potentially be substituted to

drive the motion. In the physical simulation example, we simulate

the reconstructed asset via finite-element elastic simulation on the

cage tetrahedra including collision penalties [Jatavallabhula et al.

2021].

6 DISCUSSION
Recent work has developed schemes to accelerate and improve the

quality of NeRF-like scene representations. Section 4 provides com-

parisons to selected, particularly relevant methods. Note that due

to the high research activity in the field, it is impossible to compare

Fig. 12. Our representation is well-suited for animation (top) and physical
simulation (bottom). The visual quality is preserved under deformation: the
original shape is shown in leftmost column, with deformations in the middle
and rightmost column. For details, please zoom into the fuzzy regions (e.g.
fur, leaves), and refer to the supplemental video.

to all techniques and for many approaches implementations are not

available. Hence, we offer additional comments on some related

work:

• MobileNeRF [Chen et al. 2023], BakedSDF [Yariv et al. 2023],

NeRFMeshing [Rakotosaona et al. 2023], and nerf2mesh [Tang

et al. 2023] post-process NeRF-like models and extract meshes

to accelerate inference, similar to this work. However, these ap-

proaches constrain appearance to surfaces, sacrificing quality.

Our method instead retains a full volumetric representation and

nearly full-NeRF quality, at the cost of moderately more expensive

inference (though still real-time on modern hardware).

• DuplexRF [Wan et al. 2023] also extracts an explicit shell from

the underlying neural field and uses it to accelerate rendering,

although it does so with a very different neural representation,

prioritizing performance. Their shell is directly extracted from

two thresholds of the radiance field, which requires the careful

selection of the thresholds and results in a noisy shell that is not

adapted to the local complexity of the scene in contrast to our

approach.

• VMesh [Guo et al. 2023] builds upon the similar insight that dif-

ferent parts of the scene require different treatment. However,

their formulation assumes an additional voxel-grid data structure

to mark the volumetric areas that contribute to the final render-

ing. This approach suffers from poor complexity scaling as with

the auxiliary acceleration data structure of [Müller et al. 2022].

Instead, our method uses an explicit, adaptive shell to delimit the

areas that contribute to the rendering. Apart from lower com-

plexity, our formulation seamlessly enables further applications

as discussed in Section 5.

7 CONCLUSION AND FUTURE WORK
In this work we focus on efficiently rendering NeRFs. Our first

stage of training (Section 3.2) is largely similar to that of [Li et al.

2023], and likely can be accelerated by algorithmic advancements
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and low-level tuning similar to our inference pipeline [Wang et al.

2022a].

Although our method offers large speedups for high-fidelity neu-

ral rendering and runs at real-time rates on modern hardware (Ta-

ble 1, it is still significantly more expensive than approaches such as

MeRF [Reiser et al. 2023] that precompute the neural field outputs

and bake them onto a discrete grid representation. Our formulation

is complimentary to that of MeRF [Reiser et al. 2023] and we hypoth-

esize that combining both approaches will lead to further speedups,

potentially reaching the performance—at high quality—of the meth-

ods that bake the volumetric representation to explicit meshes and

can run in real-time even on commodity hardware (e.g. [Chen et al.

2023]).

Our method does not guarantee to capture thin structures—if the

extracted adaptive shell omits a geometric region, it can never be

recovered during fine-tuning and will always be absent from the

reconstruction. Artifacts of this form are visible in someMipNeRF360
scenes. Future work will explore an iterative procedure, in which

we alternately tune our reconstruction and adapt the shell to ensure

that no significant geometry is missed. Other artifacts occasionally

present in our reconstructions include spurious floating geometry

and poorly-resolved backgrounds; both are common challenges in

neural reconstructions and our approach may borrow solutions

from other work across the field (e.g. [Niemeyer et al. 2022]).

More broadly, there is great potential in combining recent neural

representations with high-performance techniques honed for real-

time performance in computer graphics. Here, we have shown how

ray tracing and adaptive shells can be used to greatly improve

performance.
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APPENDIX
We provide additional algorithmic details and pseudocode. In the

first phase of training, our method adaptively extracts an explicit

mesh envelope which spatially bounds the neural volumetric rep-

resentation: level set evolution and shell extraction are shown in

Procedures 1 and 2. In the second phase of training, as well as infer-

ence, we leverage the extracted shells to sample query points only

where they are needed. We cast rays against the shell meshes and

compute query locations in the narrow band between the outer and

inner shell. This is detailed in Procedure 3. Note that one ray may

intersect with multiple narrow bands, however it always terminates

when encountering an inner shell. Finally, we include the overall

training pipeline in Procedure 4.
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Procedure 1 LevelSetEvolution(𝑓 , 𝑣
evolve

,𝑇 ,Δ𝑡, 𝜁 , 𝜆curv)
Input: level set field 𝑓 ∈ R𝑋×𝑌×𝑍 , velocity 𝑣

evolve
∈ R𝑋×𝑌×𝑍 , evo-

lution steps𝑇 , timestep Δ𝑡 , soft falloff threshold 𝜁 , curvature

regularization weight 𝜆curv

Output: Evolved level set field 𝑓𝑇
1: 𝑓0 ← 𝑓 ⊲Initialize level set field
2: for 𝑖 ← 0 to 𝑇 − 1 do
3:

[
𝜕𝑓𝑖
𝜕𝑡

]
mot

← − |∇𝑓𝑖 | 𝑣evolve ⊲Motion term

4:

[
𝜕𝑓𝑖
𝜕𝑡

]
curv

← −𝜆curv |∇𝑓𝑖 |
(
∇ · ∇𝑓|∇𝑓 |

)
⊲Curvature term

5: 𝜔𝑖 ← 1

2

(
1 + cos(𝜋 clamp(𝑓𝑖/𝜁 ,−1., 1.)

)
⊲Soft falloff (Eq. 5)

6:

𝜕𝑓𝑖
𝜕𝑡 ← 𝜔𝑖

( [ 𝜕𝑓𝑖
𝜕𝑡

]
mot

+
[
𝜕𝑓𝑖
𝜕𝑡

]
curv

)
7: 𝑓𝑖+1 = 𝑓𝑖 + Δ𝑡 𝜕𝑓𝑖

𝜕𝑡 ⊲Update level set field

8: Return 𝑓𝑇

Procedure 2 ShellExtraction(𝑓 , 𝑠, 𝜏𝑑 , 𝛽𝑑 , 𝜎min, 𝛽𝑒 , 𝑣max)
Input: signed distance field 𝑓 ∈ R𝑋×𝑌×𝑍 , spatially-varying kernel

size 𝑠 ∈ R𝑋×𝑌×𝑍 , grid size 𝜏𝑑 , dilation hyperparameters

𝛽𝑑 , 𝜎min, erosion hyperparameters 𝛽𝑒 , 𝑣max

Output: outer mesh𝑀+ and inner mesh𝑀−

1: 𝛼 ← Sigmoid

(
(𝑓 −𝜏𝑑/2)/𝑠

)
−Sigmoid

(
(𝑓 +𝜏𝑑/2)/𝑠

)
Sigmoid

(
(𝑓 −𝜏𝑑/2)/𝑠

) ⊲Eq. 3, as in NeuS

2:

3: ⊲Level set dilation for outer mesh
4: 𝑣

dilate
←Where(𝛼 > 𝜎min, 𝛽𝑑𝛼, 0) ⊲Eq. 6

5: 𝑓
dilate

← LevelSetEvolution(𝑓 , 𝑣
dilate

,𝑇 = 50,Δ𝑡 = 0.1,

6: 𝜁 = 0.1, 𝜆curv = 0.01)

7: 𝑓
dilate

← min(𝑓0, 𝑓dilate) ⊲Clip SDF for a strict dilation
8: 𝑀+ ← MarchingCubes(𝑓

dilate
)

9:

10: ⊲Level set erosion for inner mesh
11: 𝑣

erode
← min(𝑣max, 𝛽𝑒/𝛼) ⊲Eq. 7

12: 𝑓
erode

← LevelSetEvolution(𝑓 , 𝑣
erode

,𝑇 = 50,Δ𝑡 = 0.1,

13: 𝜁 = 0.05, 𝜆curv = 0)

14: 𝑓
erode

← max(𝑓0, 𝑓erode) ⊲Clip SDF for a strict erosion
15: 𝑀− ← MarchingCubes(𝑓

erode
)

16:

17: Return𝑀+, 𝑀−

Procedure 3 NarrowBandSampling(𝑀+, 𝑀−, 𝑟 , 𝑜,𝑤𝑠 , 𝛿𝑠 ,

. 𝑁𝑚𝑎𝑥 , 𝑑𝑝𝑚𝑎𝑥 )
Input: outer mesh𝑀+ and inner mesh𝑀− , ray origin o ∈ R3 and di-

rection r ∈ R3, target inter-sample spacing 𝛿𝑠 , single-sample

threshold 𝑤𝑠 , maximum number of samples per interval

𝑁𝑚𝑎𝑥 , and a maximum cap for depth peeling 𝑑𝑝𝑚𝑎𝑥

Output: a list of distances 𝜏𝑠 to sampled points along the ray

1: 𝜏𝑠 ← empty list, 𝑛ℎ𝑖𝑡𝑠 ← 0 ⊲Initialize Steps
2: ⊲Find hits of the inner mesh
3: 𝑟𝑎𝑦𝐻𝑖𝑡𝑠𝑀− ← CastRay(𝑀−, o, r)
4: if HasNext(𝑟𝑎𝑦𝐻𝑖𝑡𝑠𝑀− ) then
5: (𝑑𝑀− , 𝑓 𝑙𝑎𝑔) ← GetNextHit(𝑟𝑎𝑦𝐻𝑖𝑡𝑠𝑀− )
6: else
7: 𝑑𝑀− ←∞
8: ⊲Loop through the hits of the outer mesh
9: 𝑟𝑎𝑦𝐻𝑖𝑡𝑠𝑀+ ← CastRay(𝑀+, o, r)
10: while HasNext(𝑟𝑎𝑦𝐻𝑖𝑡𝑠𝑀+ ) AND 𝑛ℎ𝑖𝑡𝑠 < 𝑑𝑝𝑚𝑎𝑥 do
11: (ℎ𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑓 𝑙𝑎𝑔) ← GetNextHit(𝑟𝑎𝑦𝐻𝑖𝑡𝑠𝑀+ )
12: 𝑛ℎ𝑖𝑡𝑠 ← 𝑛ℎ𝑖𝑡𝑠 + 1
13: if 𝑓 𝑙𝑎𝑔 = ENTERING then ⊲Ray enters the mesh band
14: 𝑑𝑒𝑛𝑡𝑒𝑟 ← ℎ𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

15: else if 𝑓 𝑙𝑎𝑔 = EXITING then ⊲Ray exits the mesh band
16: ⊲Compute samples between enter and exit
17: 𝑑𝑒𝑥𝑖𝑡 ←Min(ℎ𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝑑𝑀− )

18: 𝑤 ← 𝑑𝑒𝑥𝑖𝑡 − 𝑑𝑒𝑛𝑡𝑒𝑟
19: 𝑁 ←Min(Ceil(Max(𝑤 −𝑤𝑠 , 0)/𝛿𝑠 )+1,𝑁𝑚𝑎𝑥 )

20: 𝜏𝑠 ← 𝜏𝑠 + Linspace(𝑑𝑒𝑛𝑡𝑒𝑟 , 𝑑𝑒𝑥𝑖𝑡 , 𝑁 + 2) [1 : −1]
21: if ℎ𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑑𝑀− then
22: break ⊲Terminate if beyond the inner mesh
23: end while
24: Return 𝜏𝑠

Procedure 4 Training Pipeline

Input: rays R, ground-truth pixel colors C, training iterations for
the first stage 𝑁1 and second stage 𝑁2, network NN𝜃

Output: optimized network parameters 𝜃 , shell𝑀+, 𝑀−
⊲First stage training with full ray volume rendering

1: for 𝑖 ← 0 to 𝑁1 − 1 do
2: Sample data r𝑖 ∈ R, c𝑖 ∈ C
3: 𝑜𝑢𝑡𝑝𝑢𝑡 ← VolumeRendering(NN𝜃 , r𝑖 )
4: L ← Loss(𝑜𝑢𝑡𝑝𝑢𝑡, c𝑖 ) ⊲Compute loss with Eq. 8
5: Update network: 𝜃 ← 𝜃 − 𝜂 𝜕L

𝜕𝜃

6: ⊲Extract adaptive shells
7: 𝑀+, 𝑀− ← ShellExtraction(NN𝜃 ) ⊲Section 3.3
8: ⊲Second stage training with narrow-band rendering
9: for 𝑖 ← 0 to 𝑁2 − 1 do
10: Sample data r𝑖 ∈ R, c𝑖 ∈ C
11: 𝑜𝑢𝑡𝑝𝑢𝑡 ← NarrowBandRendering(NN𝜃 , r𝑖 , 𝑀+, 𝑀−)
12: Lc ← ColorLoss(𝑜𝑢𝑡𝑝𝑢𝑡, c𝑖 ) ⊲Compute loss with Eq. 9
13: Update network: 𝜃 ← 𝜃 − 𝜂 𝜕Lc

𝜕𝜃

14: Return 𝜃 ,𝑀+, 𝑀−
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