GEN3C: 3D-Informed World-Consistent Video Generation
with Precise Camera Control
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Figure 1. GEN3C can generate long and temporally consistent videos with precise camera control. We apply it to various applications, including single-view
and sparse-views novel view synthesis, monocular dynamic video novel view synthesis, and driving simulation. With an explicit 3D cache, GEN3C further
supports generating videos with cinematic effects, such as Dolly Zoom which simultaneously changes poses and intrinsics, and 3D editing.

Abstract

We present GEN3C, a generative video model with precise
Camera Control and temporal 3D Consistency. Prior video
models already generate realistic videos, but they tend to
leverage little 3D information, leading to inconsistencies,
such as objects popping in and out of existence. Camera
control, if implemented at all, is imprecise, because camera
parameters are mere inputs to the neural network which must
then infer how the video depends on the camera. In contrast,
GEN3C is guided by a 3D cache: point clouds obtained by
predicting the pixel-wise depth of seed images or previously
generated frames. When generating the next frames, GEN3C
is conditioned on the 2D renderings of the 3D cache with the
new camera trajectory provided by the user. Crucially, this
means that GEN3C neither has to remember what it previ-

ously generated nor does it have to infer the image structure
from the camera pose. The model, instead, can focus all its
generative power on previously unobserved regions, as well
as advancing the scene state to the next frame. Our results
demonstrate more precise camera control than prior work,
as well as state-of-the-art results in sparse-view novel view
synthesis, even in challenging settings such as driving scenes
and monocular dynamic video. Results are best viewed in
videos. Check out our webpage! https://research.
nvidia.com/labs/toronto-ai/GEN3C/

1. Introduction

Creating immersive visual renderings that convey real-world
scenery while enabling flexible viewing, manipulation and
simulation thereof, is a longstanding aspiration in computer
graphics, supporting industries including movie production,


https://research.nvidia.com/labs/toronto-ai/GEN3C/
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VR/AR, robaotics and social platforms. However, traditional

graphics work ows entail extensive manual effort and time

in asset creation and scene design. Recently, Novel View

Synthesis (NVS) method&}, 36] unleash this requirement

and successfully produce realistic images at novel viewpoints

of a scene with a set of posed images. However, such meth-

ods generally require dense input images and often Sl'If-f(:"rFigure 2.Motivation: Our model can generate consistent videos when

from severe artifacts when viewing from extreme viewpoints. the camera covers the same region multiple times, while previous work
More recently, video generation models, which can “ren- produces severe artifacts due to the lack of explicit modeling of the history.

der” photorealistic videos from text prompts, have demon-

strated impressive visual quality and powerful content cre-

ation capabilities 4, 35, 40, 45], capturing the underly-

ing distribution of real-world videos by training with mas-

scene manipulation by simply modifying the 3D point cloud.
We extensively evaluate our model on video generation
tasks with varying input conditions, ranging from a single
sive amounts of data. However, the key challenge to-'mage to sparse and d(_anse multi-view inputs. Our model gen-
eralizes well to dynamic scenes and demonstrates the ability

wards practical applications in digital content creation Work-t el trol vi int 3D istent hiah
ows is controllability and consistency,e. allowing the 0 accurately control VIEwpoint, generate sb-consistent high-
delity videos, and Il in occluded or missing regions in

user to adjust camera motion, scene composition and dy- . -
e 3D cache. Beyond novel view synthesis, we explore

. S ) . h

namics, and maintaining spatial and temporal conS|stencyt . . .
across long-generated videos. While several methods havgppllcatlmnsdenabled Z)’t.the (\alcpli:()ntl.SD c;che, sucritas Olt.)ée(t:t
been proposed to address this challenge through ne-tuningremOVa » and scene editing. Ve believe these resufts validate

with images, additional text prompts or camera parame-Our approach as a step toward applying video generation

ters [L6, 31, 48, 54, 60, 61], achieving precise control for models in production and simulation environments.
subtle or complex camera movements or scene arrangemené
remains unsolved. The model can easily forget previously - Related Work

generated content when looking back and forth; see Fig. 2. Novel View Synthesis (NVS).Generating novel views from
Controllability and consistency in graphics pipelines are 3 set of posed images has seen signi cant prograss [
fundamentally rooted in their explicit modeling of 3D geom- 36 51], with numerous extensions towards large scene
etry and I’endering it into 2D views. In this Work, we take reconstruction :{, 28, 63, 72], improved rendering quai_
an initial Step towards bUIldIng this InSIght into the video |ty [2' 21, 59]’ faster rendering Speee% 59] and handiing
generation models, and propdSeN3C, a worldConsistent  gynamic scenesl[, 33. Yet, many of these methods re-
video generation model with preci€ameraControl. Its  quire a dense set of input images and may produce severe
core is an approximated 3D geometry—akin to 3D modeling artifacts when viewed from extreme viewpoints. Several
in graphics pipelines—constructed from user-provided im-works proposed to address these issues through regulariza-
ages, and can be precisely projected to any camera trajectoryion using geometric priorsLp, 39, 44, 49, 55, 64, 71, 76),
to guide video generation, providing strong conditioning which, however, are sensitive to noise in the estimated depth
for visual ConSiStency. In addition, “rendering“ with video or normals. Alternative approaches seek to train a feed-
genel’ation mOde|S IeVerageS the riCh priOI’ from pre-trainedforward modei to predict novei VieWS from Sparse posed
large models, enabling NVS in sparse-view settings. images -8, 22, 43, 52, 56, 68, 74], but these methods are
Speci cally, we construct a 3D cache, represented as alimited by the scarcity of training data and struggle to gen-
point cloud, by unprojecting a depth estimate of the input eralize to unseen domains and extreme novel views. With
image(s) or previously generated video frames. With the the recent success of image/video generation models, Re-
camera trajectory from the user, we then render the 3D cacheconFusion $2] and CAT3D [L7] started leveraging prior
and use the rendered video as conditioning input for theknowledge learned by these models to facilitate sparse-view
video model. The video model is ne-tuned to translate im- NVS. Due to the necessity of per-scene optimization, these
perfectly rendered video into a high-quality video, correcting methods remain inherently slow. Concurrent and unpub-
any artifacts that stem from the 3D unprojection-projection lished work, including ReconX3[] and ViewCrafter [ (],
process and lling in missing information. This way, we are closer to our work. However, they rely on the alignment
achieve precise control of the camera and encourage the gersf input multiple views using DUSt3R5[7], which is not
erated video to remain consistent over time. When multiple robust to thin structures, and introduces artifacts when mis-
views are provided, we maintain a separate 3D cache foralignment happens. MultiDiff7] leverages depth to warp
each individual view and leverage the video model to han-a single image as guidance for novel view synthesis using a
dle potential misalignment and aggregattion across viewsvideo diffusion model. It, however, only focuses on single
Acting as an explicit geometry, the 3D cache further enablesview setting.



Figure 3.0verview of GEN3C. With the user input, which can be a image, images, or ,we rstbuild a spatiotemporal
3D cache (Sec. 4.1) by predicting the depth for each image and unprojecting it into 3D. With the camera poses from the user, we then render the cache into
video(s) (Sec. 4.2), which are fed into the video diffusion model to generate a photorealistic video that aligns with the desired camera poses (Sec. 4.3 & 4.4).

Camera-Controllable Video Generation. Early works to model a data distributiopya X) via an iterative denoising
propose inputting numerical camera parameters into theirprocess. To train the model, noisy versians=  Xg+

video generation models as an additional condition to ne- of a data sampl&y,  pgad(X) are constructed by adding
tune for camera controllp, 31, 48, 54, 60, 61]. However, noise sampled from a Gaussian distributiow(0; 1), with
these works struggle with precise control due to the modelthe noise schedule parameterized byand . The dif-
having to learn the mapping from the camera parametersfusion time is sampled from the distributiop . Then,
to video, usually failing to generalize to camera motion the parameters of the diffusion modef are optimized to
that is different from the training data. Several training-free minimize the denoising score matching objective function:
methods 19, 67] proposed to leverage depth to warp a single

frame to a given camera trajectory and incorporate the result  Ex, peux): p: N (o) Kf (X ;¢ ) yk3 5 (1)

in the denoising process of a pre-trained diffusion model.

This requires tuning the degree of consistency between thevherec is optional conditions, and the targetcan be ,
depth-warped images and the denoising output, leading to Xo [46], or Xo [23], depending on the selected

either artifacts or imprecise camera control. denoising process. Once trained, iteratively applfintp a
sample of Gaussian noise will produce a samplpsgf(x).

In diffusion-based video generation models, latent diffu-
sion models §] are frequently employed to compress the
video for operation in a lower-dimensional space. Speci -

Consistent Video Generation. Early work [34] leverages
a 3D point cloud, similar to our 3D cache, obtained by ap-
plying structure from motion to past frames. Renders of this
point cloud are used to condition a Generative Adversarial cally, given the a RGB video data2 R- 2 H W where
Network [13]. Instead, we estimate the depth for each seedL is ’the number of frames of siz¢ W a pre’—trained
'mage that is then reqonc_ﬂed by a diffusion-based video VAE encoderE will encode the video into a latent space,
generation model, which is more robust to small-overlap ie.z= E(x) 2 RL® C h w Training and inference of
IMages. Streetscapeq [mproved the cpn&stgncy of video the diffusion model are performed in this latent space. The
diffusion models by relying on a precise height map of the nal video ® = D(z) is decoded with a pre-trained VAE
environment that is not necessarily available. More recently,decoderD In this paper, we leverage the pre-trained Stable
CVD [27] make synchronous frames of generated videos, ;. pittusion [4] model, which is conditioned on an image
consistent with each other. However, overall consistency iS¢ and only compresses the video in the spatial dimension:
still lost if content temporarily leaves the view all videos, %= 'C =4-h=" andw= " However our method '
. . . . . [ - [ - 3 - @1 - ? 1
bepausg no h!story is maintained. Streaming T2y} ain is compatible with any other image-to-video diffusion model,
tain a history in the form of latent feature maps to enhanceas it does not rely on details of its architecture
consistency, but camera control remains dif cult because the '
history is latent rather than 3D. 4. Method: 3D-Informed Video Generation
Our key idea is to use 3D guidance to inform video gener-
ation, enabling precise camera control and improving con-
As our method is based on a video diffusion model, we sistency across the video frames. For this purpose, we rst
brie y review their principles. A diffusion moddl learns build a 3D cache from the input image(s) or pre-generated

3. Background: Video Diffusion Models



	Introduction
	Related Work
	Background: Video Diffusion Models
	Method: 3D-Informed Video Generation
	Building a Spatiotemporal 3D Cache
	Rendering the 3D Cache
	Fusing and Injecting the 3D Cache
	Model Training
	Model Inference

	Experiments and Applications
	Training Details
	Single View to Video Generation
	Two-Views Novel View Synthesis
	Novel View Synthesis for Driving Simulation
	Monocular Dynamic Novel View Synthesis
	Ablation Study
	Extending to Advanced Video Diffusion Model

	Conclusion
	Method Details
	Auto-regressive generation

	Experimental Details
	Optimization Details
	Inference Details
	Single-view to video generation
	Two-views NVS
	NVS for driving simulation
	Monocular Dynamic NVS

	Additional Results
	Generalization with mask channel
	Single-view to video generation
	Monocular Dynamic Novel View Synthesis


