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Figure 1. GEN3C can generate long and temporally consistent videos with precise camera control. We apply it to various applications, including single-view
and sparse-views novel view synthesis, monocular dynamic video novel view synthesis, and driving simulation. With an explicit 3D cache, GEN3C further
supports generating videos with cinematic effects, such as Dolly Zoom which simultaneously changes poses and intrinsics, and 3D editing.

Abstract

We present GEN3C, a generative video model with precise
Camera Control and temporal 3D Consistency. Prior video
models already generate realistic videos, but they tend to
leverage little 3D information, leading to inconsistencies,
such as objects popping in and out of existence. Camera
control, if implemented at all, is imprecise, because camera
parameters are mere inputs to the neural network which must
then infer how the video depends on the camera. In contrast,
GEN3C is guided by a 3D cache: point clouds obtained by
predicting the pixel-wise depth of seed images or previously
generated frames. When generating the next frames, GEN3C
is conditioned on the 2D renderings of the 3D cache with the
new camera trajectory provided by the user. Crucially, this
means that GEN3C neither has to remember what it previ-

ously generated nor does it have to infer the image structure
from the camera pose. The model, instead, can focus all its
generative power on previously unobserved regions, as well
as advancing the scene state to the next frame. Our results
demonstrate more precise camera control than prior work,
as well as state-of-the-art results in sparse-view novel view
synthesis, even in challenging settings such as driving scenes
and monocular dynamic video. Results are best viewed in
videos. Check out our webpage! https://research.
nvidia.com/labs/toronto-ai/GEN3C/

1. Introduction
Creating immersive visual renderings that convey real-world
scenery while enabling flexible viewing, manipulation and
simulation thereof, is a longstanding aspiration in computer
graphics, supporting industries including movie production,
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VR/AR, robotics and social platforms. However, traditional
graphics work�ows entail extensive manual effort and time
in asset creation and scene design. Recently, Novel View
Synthesis (NVS) methods [25, 36] unleash this requirement
and successfully produce realistic images at novel viewpoints
of a scene with a set of posed images. However, such meth-
ods generally require dense input images and often suffer
from severe artifacts when viewing from extreme viewpoints.

More recently, video generation models, which can “ren-
der” photorealistic videos from text prompts, have demon-
strated impressive visual quality and powerful content cre-
ation capabilities [4, 35, 40, 45], capturing the underly-
ing distribution of real-world videos by training with mas-
sive amounts of data. However, the key challenge to-
wards practical applications in digital content creation work-
�ows is controllability and consistency,i.e. allowing the
user to adjust camera motion, scene composition and dy-
namics, and maintaining spatial and temporal consistency
across long-generated videos. While several methods have
been proposed to address this challenge through �ne-tuning
with images, additional text prompts or camera parame-
ters [16, 31, 48, 54, 60, 61], achieving precise control for
subtle or complex camera movements or scene arrangement
remains unsolved. The model can easily forget previously
generated content when looking back and forth; see Fig. 2.

Controllability and consistency in graphics pipelines are
fundamentally rooted in their explicit modeling of 3D geom-
etry and rendering it into 2D views. In this work, we take
an initial step towards building this insight into the video
generation models, and proposeGEN3C, a world-Consistent
video generation model with preciseCameraControl. Its
core is an approximated 3D geometry—akin to 3D modeling
in graphics pipelines—constructed from user-provided im-
ages, and can be precisely projected to any camera trajectory
to guide video generation, providing strong conditioning
for visual consistency. In addition, “rendering” with video
generation models leverages the rich prior from pre-trained
large models, enabling NVS in sparse-view settings.

Speci�cally, we construct a 3D cache, represented as a
point cloud, by unprojecting a depth estimate of the input
image(s) or previously generated video frames. With the
camera trajectory from the user, we then render the 3D cache
and use the rendered video as conditioning input for the
video model. The video model is �ne-tuned to translate im-
perfectly rendered video into a high-quality video, correcting
any artifacts that stem from the 3D unprojection-projection
process and �lling in missing information. This way, we
achieve precise control of the camera and encourage the gen-
erated video to remain consistent over time. When multiple
views are provided, we maintain a separate 3D cache for
each individual view and leverage the video model to han-
dle potential misalignment and aggregattion across views.
Acting as an explicit geometry, the 3D cache further enables

Figure 2.Motivation: Our model can generate consistent videos when
the camera covers the same region multiple times, while previous work
produces severe artifacts due to the lack of explicit modeling of the history.

scene manipulation by simply modifying the 3D point cloud.
We extensively evaluate our model on video generation

tasks with varying input conditions, ranging from a single
image to sparse and dense multi-view inputs. Our model gen-
eralizes well to dynamic scenes and demonstrates the ability
to accurately control viewpoint, generate 3D-consistent high-
�delity videos, and �ll in occluded or missing regions in
the 3D cache. Beyond novel view synthesis, we explore
applications enabled by the explicit 3D cache, such as object
removal, and scene editing. We believe these results validate
our approach as a step toward applying video generation
models in production and simulation environments.

2. Related Work

Novel View Synthesis (NVS).Generating novel views from
a set of posed images has seen signi�cant progress [25,
36, 51], with numerous extensions towards large scene
reconstruction [3, 28, 63, 72], improved rendering qual-
ity [2, 21, 59], faster rendering speed [38, 59] and handling
dynamic scenes [11, 33]. Yet, many of these methods re-
quire a dense set of input images and may produce severe
artifacts when viewed from extreme viewpoints. Several
works proposed to address these issues through regulariza-
tion using geometric priors [10, 39, 44, 49, 55, 64, 71, 76],
which, however, are sensitive to noise in the estimated depth
or normals. Alternative approaches seek to train a feed-
forward model to predict novel views from sparse posed
images [6–8, 22, 43, 52, 56, 68, 74], but these methods are
limited by the scarcity of training data and struggle to gen-
eralize to unseen domains and extreme novel views. With
the recent success of image/video generation models, Re-
conFusion [62] and CAT3D [12] started leveraging prior
knowledge learned by these models to facilitate sparse-view
NVS. Due to the necessity of per-scene optimization, these
methods remain inherently slow. Concurrent and unpub-
lished work, including ReconX [30] and ViewCrafter [70],
are closer to our work. However, they rely on the alignment
of input multiple views using DUSt3R [57], which is not
robust to thin structures, and introduces artifacts when mis-
alignment happens. MultiDiff [37] leverages depth to warp
a single image as guidance for novel view synthesis using a
video diffusion model. It, however, only focuses on single
view setting.

2



Figure 3.Overview ofGEN3C. With the user input, which can be a single-view image, multi-view images, or dynamic video(s), we �rst build a spatiotemporal
3D cache (Sec. 4.1) by predicting the depth for each image and unprojecting it into 3D. With the camera poses from the user, we then render the cache into
video(s) (Sec. 4.2), which are fed into the video diffusion model to generate a photorealistic video that aligns with the desired camera poses (Sec. 4.3 & 4.4).

Camera-Controllable Video Generation. Early works
propose inputting numerical camera parameters into their
video generation models as an additional condition to �ne-
tune for camera control [15, 31, 48, 54, 60, 61]. However,
these works struggle with precise control due to the model
having to learn the mapping from the camera parameters
to video, usually failing to generalize to camera motion
that is different from the training data. Several training-free
methods [19, 67] proposed to leverage depth to warp a single
frame to a given camera trajectory and incorporate the result
in the denoising process of a pre-trained diffusion model.
This requires tuning the degree of consistency between the
depth-warped images and the denoising output, leading to
either artifacts or imprecise camera control.

Consistent Video Generation.Early work [34] leverages
a 3D point cloud, similar to our 3D cache, obtained by ap-
plying structure from motion to past frames. Renders of this
point cloud are used to condition a Generative Adversarial
Network [13]. Instead, we estimate the depth for each seed
image that is then reconciled by a diffusion-based video
generation model, which is more robust to small-overlap
images. Streetscapes [9] improved the consistency of video
diffusion models by relying on a precise height map of the
environment that is not necessarily available. More recently,
CVD [27] make synchronous frames of generated videos
consistent with each other. However, overall consistency is
still lost if content temporarily leaves the view ofall videos,
because no history is maintained. StreamingT2V [17] main-
tain a history in the form of latent feature maps to enhance
consistency, but camera control remains dif�cult because the
history is latent rather than 3D.

3. Background: Video Diffusion Models

As our method is based on a video diffusion model, we
brie�y review their principles. A diffusion modelf � learns

to model a data distributionpdata(x) via an iterative denoising
process. To train the model, noisy versionsx � = � � x0+ � � �
of a data samplex0 � pdata(x) are constructed by adding
noise� sampled from a Gaussian distribution,N (0; I ), with
the noise schedule parameterized by� � and� � . The dif-
fusion time� is sampled from the distributionp� . Then,
the parameters� of the diffusion modelf � are optimized to
minimize the denoising score matching objective function:

Ex 0 � pdata(x ) ;� � p� ;� �N (0;I )
�
kf � (x � ; c; � ) � yk2

2

�
; (1)

wherec is optional conditions, and the targety can be� ,
� � � � � � x0 [46], or x0 [23], depending on the selected
denoising process. Once trained, iteratively applyingf � to a
sample of Gaussian noise will produce a sample ofpdata(x).

In diffusion-based video generation models, latent diffu-
sion models [5] are frequently employed to compress the
video for operation in a lower-dimensional space. Speci�-
cally, given the a RGB video datax 2 RL � 3� H � W , where
L is the number of frames of sizeH � W, a pre-trained
VAE encoderE will encode the video into a latent space,
i.e. z = E(x) 2 RL 0� C � h � w . Training and inference of
the diffusion model are performed in this latent space. The
�nal video x̂ = D(z) is decoded with a pre-trained VAE
decoderD. In this paper, we leverage the pre-trained Stable
Video Diffusion [4] model, which is conditioned on an image
c and only compresses the video in the spatial dimension:
L 0 = L; C = 4 ; h = H

8 , andw = W
8 . However, our method

is compatible with any other image-to-video diffusion model,
as it does not rely on details of its architecture.

4. Method: 3D-Informed Video Generation
Our key idea is to use 3D guidance to inform video gener-
ation, enabling precise camera control and improving con-
sistency across the video frames. For this purpose, we �rst
build a 3D cache from the input image(s) or pre-generated
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