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Fig. 1. We demonstrate the high-quality reconstruction of volumetric scattering parameters from RGB images with known camera poses (left). This is enabled
by our novel differential ratio tracking formulation, which yields unbiased, low-variance gradients of the radiative transfer equation that can be directly
used for optimization. Traditional free-flight sampling—e.g. by delta tracking—while effective at low-variance rendering, exhibits bias and high variance in
gradient estimation with respect to medium density (top right), which negatively affects optimization. Gradient mean and variance values are shown for slice
𝑧 = 64 of the 256×128×128 parameter space. In the chart (bottom right), we report the improvements in reconstruction error for stochastic gradient descent
with momentum (SGDm) as well as Adam. Using aggressive step size reduction, the Adam optimizer limits the impact of large gradient outliers, though our
unbiased gradients lead to the lowest reconstruction error with either optimizer.

Volumetric representations are popular in inverse rendering because they
have a simple parameterization, are smoothly varying, and transparently han-
dle topology changes. However, incorporating the full volumetric transport
of light is costly and challenging, often leading practitioners to implement
simplified models, such as purely emissive and absorbing volumes with
“baked” lighting. One such challenge is the efficient estimation of the gradi-
ents of the volume’s appearance with respect to its scattering and absorption
parameters. We show that the straightforward approach—differentiating a
volumetric free-flight sampler—can lead to biased and high-variance gra-
dients, hindering optimization. Instead, we propose using a new sampling
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strategy: differential ratio tracking, which is unbiased, yields low-variance
gradients, and runs in linear time. Differential ratio tracking combines ra-
tio tracking and reservoir sampling to estimate gradients by sampling dis-
tances proportional to the unweighted transmittance rather than the usual
extinction-weighted transmittance. In addition, we observe local minima
when optimizing scattering parameters to reproduce dense volumes or sur-
faces.We show that these local minima can be overcome by bootstrapping the
optimization from nonphysical emissive volumes that are easily optimized.
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1 INTRODUCTION
3D reconstruction from images (inverse rendering) through differen-
tiation has become an important method in a graphics practitioner’s
toolbox. The rapidly growing set of practical applications spans
many fields, including light field capture [Mildenhall et al. 2020], 3D
print optimization [Nindel et al. 2021], cloud tomography [Loeub
et al. 2020; Ronen et al. 2021; Sde-Chen et al. 2021] non-line of sight
imaging [Tsai et al. 2019], computational lens design [Sun et al.
2021b], as well as automatic simplification and reconstruction of
video game assets [Hasselgren et al. 2021; Munkberg et al. 2021].

Volumetric inverse rendering approaches are particularly attrac-
tive due to their flexibility in representing both hard and soft sur-
faces, their inherent smoothness, as well as their invariance to
topological changes. Nonetheless, the efficient evaluation of radia-
tive transfer and its derivatives—as required in a gradient descent
algorithm—remains difficult. Current methods generally follow two
strategies to cope with this difficulty: (i) simplifying the model, such
as by only permitting emission and absorption [Mildenhall et al.
2020] or limiting the permissible materials and illumination [Srini-
vasan et al. 2021], and (ii) developing more advanced algorithms
for efficiently differentiating the radiative transfer equation in its
general form [Nimier-David et al. 2020; Vicini et al. 2021b; Zhang
et al. 2021b]. Our contributions pertain to both strategies.
First, we follow the general observation that forward-rendering

strategies are not necessarily suitable for differential rendering [Zelt-
ner et al. 2021; Zhang et al. 2021a], showing that standard volumetric
free-flight sampling yields biased and high-variance gradients. This
can be explained intuitively: free-flight sampling places samples
on the portions of the volume contributing most to its appearance
(formally: proportional to the product of transmittance and den-
sity). However, even in empty space, gradients may have non-trivial
magnitude, e.g. to reconstruct an object where previously there was
just air. In Section 4 we show that placing samples in all visible
regions (proportional to just transmittance) significantly reduces
the variance of these types of gradients. Based on this insight, we
propose a novel sampling scheme, differential ratio tracking, that
combines (residual) ratio tracking and reservoir sampling to sam-
ple distances proportional to transmittance. We use an additional
weighted reservoir to integrate differential ratio tracking into the
linear-time path replay backpropagation algorithm [Vicini et al.
2021b], leading to better behaved gradient descent optimization
and lower reconstruction error with limited overhead, as shown
in Figure 1. Our sampling scheme is dedicated to physically-based
scattering and absorbing volumes (which are inherently relightable),
as opposed to NeRF-style emissive volumes [Mildenhall et al. 2020].

Second, we observe that the loss landscape of the volumetric scat-
tering coefficient contains local minima in which the optimization
can get stuck. We propose alleviating this problem by first training
a simplified model with known favorable convergence properties: a
purely emissive and absorbing volume, similar to concurrent work
on voxel-based radiance fields [Yu et al. 2021a]. We use the resulting
densities to bootstrap our scattering volume optimization, optimiz-
ing only for the unknown scattering albedos. Our experiments show
empirically that this procedure results in significantly more accurate
reconstruction; see Figure 2.

(a) Delta Tracking (b) Ours (constant init.) (c) Ours (emissive init.)

Fig. 2. Optimizing a scattering volume to reproduce an object from 64 refer-
ence images. The false-color visualization indicates the absolute difference
of the final result to the reference image. (a) Using the same free-flight sam-
pling technique to estimate both the primal image and the gradients results
in biased and high-variance gradients (Section 4.2), hindering convergence
in empty or low-density regions. (b) Using our novel differential ratio track-
ing technique (Section 4.3) significantly reduces gradient variance, leading
to a better reconstruction. (c) We further propose to initialize the scattering
volume optimization from the result of a nonphysical emissive volume opti-
mization in the style of NeRF [Mildenhall et al. 2020] (Section 5). This helps
overcome local minima, greatly improving sharpness of the final model.

We begin by reviewing related work (Section 2) and the rele-
vant volumetric rendering theory (Section 3). Our differential ratio
tracking strategy for low-variance gradient estimation is derived in
Section 4, followed by the bootstrapping of our optimization with
an initial simplified model in Section 5. Finally, we conclude with
an evaluation and discussion of our combined method (Section 6).
Our implementation is made available at the following URL:

https://rgl.epfl.ch/publications/NimierDavid2022Unbiased

2 RELATED WORK
Existing work on differentiable rendering covers a large range of
capabilities and admissible representations, spanning from ray-
marched, purely emissive and absorbing volumes [Mildenhall et al.
2020; Yu et al. 2021a] over directly lit, rasterized objects [Hasselgren
et al. 2021; Kato et al. 2017; Laine et al. 2020; Liu et al. 2019; Loper and
Black 2014; Munkberg et al. 2021; Petersen et al. 2019; Rhodin et al.
2015], to globally illuminated physically-based surfaces [Azinović
et al. 2019; Bangaru et al. 2020; Li et al. 2018; Zhang et al. 2020], vol-
umes [Che et al. 2020; Gkioulekas et al. 2013; Khungurn et al. 2016;
Zhang et al. 2021b], and both [Nimier-David et al. 2020, 2019; Vicini
et al. 2021b; Zeltner et al. 2021; Zhang et al. 2019]. Our work belongs
to the category of differentiable physically-based volume render-
ing, where we contribute a novel importance sampling strategy for
low-variance unbiased gradient estimation that runs in linear time.

Efficient differentiable global illumination. One major challenge
of differentiating a physically based renderer is complex interreflec-
tion: in high-albedo materials, such as clouds, the simulated path
length can approach dozens to hundreds of vertices, making naïve
automatic differentiation of the rendering algorithm impractical.
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Nimier-David et al. [2020] instead reformulate the derivatives of the
rendering equation as an adjoint integral that distributes gradients
to scene parameters through a separate differential path tracing
pass, vastly outperforming naïve automatic differentiation in low-
order scattering. High-order scattering, however, is expensive due
to the O(𝑛2) cost of 𝑛-vertex paths; this has been reduced to O(𝑛)
computation and O(1) memory [Vicini et al. 2021b] by exploiting
arithmetic invertibility. Vicini et al. [2021b] also demonstrated the
feasibility of differentiable volume rendering using delta tracking,
as opposed to ray marching.

One notable difference when solving an adjoint integral is that the
set of Monte Carlo sampling strategies used for primal rendering can
be replaced by specialized methods targeting the derivative. Zeltner
et al. [2021] observe that reuse of primal strategies is often subopti-
mal for gradient estimation and that tailored differential strategies
should be used. Our work points out volumetric free-flight sampling
as such a case. We propose augmenting free-flight sampling with
our differential ratio tracking algorithm, offering unbiased and low-
variance estimates of the adjoint integral. Special care is taken to
retain compatibility with the method of Vicini et al. [2021b], preserv-
ing the linear time and constant memory complexity. Our method
can reconstruct highly scattering, physically based volumes.
Tregan et al. [2020] identify a related problem in the differentia-

tion of radiative transport integrals: a singularity in the gradient of
null collisions. We find that this singularity can be sidestepped by
selecting a large enough majorant, or is solved naturally in the con-
text of our method (Appendix A). We focus on the singularity in the
gradients of real collisions, which is not addressed by Tregan et al.

Zhang et al. [2021b] derive a path-space formulation of the com-
bined derivatives of surface and volume light transport, including
new boundary gradients samplers. These samplers are orthogo-
nal to ours: for volumetric gradients, Zhang et al. utilize standard
forward-rendering sampling, which we propose to augment.

Inverse volume rendering. In early work, Klehm et al. [2014] op-
timize a linearized representation of a single-scattering and emis-
sive volume to match artist input. Khungurn et al. [2016] fit the
non spatially-varying parameters of a volumetric cloth appearance
model from measurements using differentiable rendering, while
Zhao et al. [2016] optimize single-scattering albedos and phase func-
tions. However, neither optimize for the extinction coefficient 𝜎𝑡 ,
which is the main focus of our work. Gkioulekas et al. [2016] present
a general inverse rendering framework for non-emissive heteroge-
neous volumessupporting a broader type of measurements such as
transient imaging. Their inverse rendering algorithm, based on the
score function, is susceptible to the same gradient bias and variance
issues addressed by our method.

Emissive and absorbing volumes. Mildenhall et al. [2020] and
follow-ups [Barron et al. 2021a,b; Dellaert and Yen-Chen 2021; Liu
et al. 2020; Mildenhall et al. 2021; Müller et al. 2022] demonstrate
that the appearance of objects can be faithfully reproduced by an ab-
sorbing volume with directionally varying emission profile and no
internal scattering whatsoever. With neural radiance fields (NeRF),
they parameterize the 3D density (absorption coefficient) as well
as the 5D spatio-directional emission using fully connected neural
networks. However, neural networks appear to not be necessary

for high-quality results [Garbin et al. 2021; Sun et al. 2021a; Yu et al.
2021a,b]. Rather, the parameterization in terms of absorption and
emission, coupled with a differentiable rendering algorithm, seems
to be key. Like prior work, we observe that—unlike scattering vol-
umes which are prone to unfavorable local minima—purely emissive
and absorbing volumes reliably converge to plausible 3D densities.
Thus, in addition to reducing gradient variance, we first reconstruct
one such emissive and absorbing volume, then use its density to
bootstrap the reconstruction of a relightable, scattering volume. For
simplicity we represent all volumetric parameters as scalars on a 3D
grid; our learned emission is isotropic. In X-ray tomography Geva
et al. [2018] similarly initialize their optimization with the result of
an absorption-only reconstruction, then account for scattering.

Relighting. Often, the goal of inverse rendering is not merely
to render novel viewpoints of reconstructed objects, but also to
place them under novel lighting conditions. To this end, two general
strategies emerged: first, the appearance under different lighting
conditions can be learned from data, e.g. in terms of abstract la-
tent codes [Martin-Brualla et al. 2021] or radiative transfer func-
tions [Zheng et al. 2021]. And second, a shading model—with direct
lighting [Bi et al. 2020; Boss et al. 2021; Hasselgren et al. 2021;
Munkberg et al. 2021; Srinivasan et al. 2021] or global illumina-
tion [Azinović et al. 2019; Gkioulekas et al. 2013; Khungurn et al.
2016; Nimier-David et al. 2019; Zhang et al. 2021b]—can be pos-
tulated, under which the inverse rendering process reconstructs
shading parameters, such as the volumetric scattering coefficient,
rather than directly solving for appearance. The latter kind tends
towards (much) more difficult reconstruction, however in turn per-
mitting more general relighting. Our method, belonging to this cate-
gory, aims to alleviate the difficult reconstruction by bootstrapping
from a simpler, non-relightable reconstruction and, subsequently,
estimating low-variance scattering parameter gradients.

3 PRELIMINARIES
We review the most relevant aspects of volumetric path tracing
(forward rendering) and the radiative backpropagation formulation
for gradient estimation (adjoint rendering).

3.1 Volumetric Path Tracing
We consider a heterogeneous medium with small, independently
distributed, scattering and absorbing particles. Such a medium is
described by its spatially varying absorption 𝜎𝑎 (x) and scattering
coefficients 𝜎𝑠 (x) which are proportional to the density of particles
along a ray (units of m−1). The extinction coefficient 𝜎𝑡 := 𝜎𝑎 + 𝜎𝑠 is
defined as the sum of absorption and scattering.

When referring to a position x𝑡 = x0 + 𝑡 · 𝝎 along a ray (x0, 𝝎),
we will use 𝑡 and x𝑡 interchangeably to avoid cluttering formulae.
For example, the transmittance along the ray is defined as

T(𝑎, 𝑏) := exp
(
−

∫ 𝑏

𝑎

𝜎𝑡 (𝑠) d𝑠
)
, (1)

where 𝜎𝑡 (𝑠) ≡ 𝜎𝑡 (x0 + 𝑠 ·𝝎). We use the shorthand T(𝑡) ≡ T(0, 𝑡) ≡
T(x0, x𝑡 ). Volumetric light transport is governed by the volume
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In-scattering gradients Transmittance gradients

Missing gradients (bias)Poorly sampled gradients

Fig. 3. Forward rendering of volumes involves sampling free-flight distances
𝑡 proportional to the density-weighted transmittance 𝜎𝑡 (𝑡 ) T(𝑡 ) . Directly
applying forward sampling techniques in the context of gradient estimation
(the adjoint) leads to biased and high-variance gradients. In particular,
gradients due to in-scattering are poorly sampled where density is low and
never sampled where it is zero. We propose a tailored importance sampling
scheme for the adjoint, which resolves both bias and variance concerns.

rendering equation [Kajiya and Von Herzen 1984]

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
T(𝑡)

[
𝜎𝑎 (𝑡) 𝐿𝑒 (𝑡) + 𝜎𝑠 (𝑡) 𝐿𝑠 (𝑡,𝝎)

]
d𝑡

+ T(𝑡𝑠 )
[
𝐿𝑒 (𝑡𝑠 ) + 𝐿𝑠 (𝑡𝑠 ,𝝎)

]
, (2)

where 𝐿𝑖 (x,𝝎) is the radiance in direction 𝝎 at position x and 𝐿𝑒
denotes emission from the medium, a surface, or from the environ-
ment. 𝑡𝑠 corresponds to the distance along the ray to the closest
surface or medium boundary. 𝐿𝑠 is the in-scattered radiance on
volumes or surfaces:

𝐿𝑠 (x,𝝎) :=
∫
𝑆2

𝐿𝑖 (x,𝝎 ′) 𝑓𝑠 (x,𝝎,𝝎 ′) d𝝎 ′ , (3)

where 𝑓𝑠 denotes either the phase function or the bidirectional scat-
tering distribution function (BSDF) depending on whether x lies on a
surface or in amedium.We parametrizemedia by 𝜽 := (𝜎𝑡 , 𝛼), where
the scattering albedo 𝛼 := 𝜎𝑠/𝜎𝑡 captures the probability of scattering
(as opposed to absorption) at an interaction with the medium.

Free-flight distance sampling. Estimating Equation (2) (as well as
Equation (23) of Appendix A) with Monte Carlo integration involves
efficiently sampling a so-called free-flight distance 𝑡 , which corre-
sponds to the distance to the next light-particle interaction along the
ray. This distance is distributed proportional to 𝜎𝑡 (𝑡) T(𝑡), which
can be analytically sampled in homogeneous volumes. In heteroge-
neous volumes, however, a more advanced algorithm must be used.
Delta tracking [Butcher and Messel 1958], also known as Woodcock
tracking [Woodcock et al. 1965], homogenizes the medium by intro-
ducing fictitious matter such that the extinction coefficient of the
volume is equal to the majorant 𝜎 everywhere. The algorithm then
analytically samples a free-flight distance proportional to 𝜎 T̄(𝑡),
where T̄(𝑡) is the homogenized transmittance. Finally, the ray is
stochastically determined to have encountered a real particle with
probability 𝜎𝑡 (𝑡 )/�̄� , or a fictitious one otherwise. The algorithm re-
peats until a real interaction has been found; the resulting distance
𝑡 has been shown to be distributed proportional to 𝜎𝑡 (𝑡) T(𝑡) as

desired [Woodcock et al. 1965]. The choice of majorant 𝜎 affects the
efficiency: the more closely it bounds 𝜎𝑡 , the smaller the number of
fictitious interactions that are processed.

Transmittance estimation. A related operation in volumetric light
transport is estimating the transmittance T(𝑡) along a ray segment:
the fraction of light traveling a distance 𝑡 without being absorbed
or scattered away. Transmittance can be estimated in a number
of ways, such as by marching along the ray in fixed intervals and
correcting for bias [Kettunen et al. 2021], and, most relevant for us,
by free-flight sampling and thus delta tracking. Delta tracking can
be thought of as a binary estimate of T(𝑡). The estimate is one (all
light is transmitted) if a sampled free-flight distance is larger than
𝑡 and zero (no light is transmitted) otherwise. This interpretation
can be generalized to lower-variance, non-binary estimates of the
transmittance by keeping track of the proportion of real vs. fictitious
matter 𝜎𝑡 (𝑡 )/�̄� at each step; this is called ratio tracking [Novák et al.
2014]. Our method combines ratio tracking and reservoir sampling
to sample proportional to T(𝑡) only rather than 𝜎𝑡 (𝑡) T(𝑡). We will
show this density to be desirable for unbiased, low-variance gradient
estimation in (near-)empty regions of space; illustrated in Figure 3.

3.2 Adjoint Radiative Transport
While our method does not depend on either radiative- [Nimier-
David et al. 2020] or path replay backpropagation [Vicini et al.
2021b], these methods make it possible to efficiently estimate gradi-
ents for millions of parameters in parallel, including in the presence
of high-order scattering. It is thus desirable to ensure our proposed
algorithm is compatible with them. We review the relevant aspects
here, and refer the reader to the original papers for full detail.

Radiative backpropagation. Radiative backpropagation recasts the
estimation of gradients with respect to scene parameters as a modi-
fied transport problem. For example, in the context of image-based
optimization, the gradient of an objective function w.r.t. image pixel
values is transported from the camera and into the scene. Paths
interacting with scene objects containing differentiable parameters
“deposit” the transported gradients as an adjoint quantity that is ac-
cumulated in the parameters’ gradients. The accumulated quantity
is weighted by the incident radiance 𝐿𝑖 at that point.

Radiative backpropagation admits efficient CPU and GPU imple-
mentations and can apply separate specialized sampling strategies
to the primal- (forward rendering of the scene) and adjoint problems
(estimating gradients w.r.t. scene parameters).

Path replay backpropagation. As originally presented, the unbi-
ased variant of radiative backpropagation requires starting recur-
sive paths at each interaction with differentiable objects in order
to obtain an estimate of the incident radiance 𝐿𝑖 . This raises the
worst-case complexity to O(𝑛2), with 𝑛 being the number of path
vertices. Path replay backpropagation [Vicini et al. 2021b] leverages
the deterministic nature of pseudo-random number generators to
bring complexity back to linear time and constant memory. The
algorithm consists of three steps:

I A forward (primal) rendering of the current state of the scene
is performed and used to evaluate the objective function.
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II A second, uncorrelated1 primal rendering pass estimates and
stores the radiance 𝐿II

𝑖
for each path.

III An adjoint rendering pass replays the paths traced in step (II)
using the same random number generator seed. The stored
incident radiance values 𝐿II

𝑖
are used to weight gradients,

without the need to trace a recursive path.

In the context of this paper, it is important to note that the steps
(II) and (III) must use the same paths, and hence the same sampling
methods to construct them. We must take care to make any new
sampling technique compatible with this constraint in order to
preserve the linear runtime (Section 4.7).

4 UNBIASED INVERSE VOLUMETRIC PATH TRACING
We now turn to the problem of efficiently estimating gradients with
respect to scene parameters in the presence of heterogeneous media.

4.1 Differentiating the Radiative Transfer Equation
Reconstructing media that are both reflective and emissive intro-
duces ambiguities that are challenging to resolve using only image-
based observations. Since the appearance of real-world objects is
usually determined by their scattering properties rather than inter-
nal emission, we restrict our goal to reconstructing non-emissive
volumes that obtain their color from scattering and absorption; we
set 𝐿𝑒 = 0 within the medium. Using the 𝜽 = (𝜎𝑡 , 𝛼) parametrization
of the medium, the radiative transfer equation (2) then simplifies to:

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
T(𝑡) 𝜎𝑡 (𝑡) 𝛼 (𝑡) 𝐿𝑠 (𝑡,𝝎) d𝑡

+ T(𝑡𝑠 )
[
𝐿𝑒 (𝑡𝑠 ) + 𝐿𝑠 (𝑡𝑠 ,𝝎)

]
, (4)

where 𝑡𝑠 denotes the position of the nearest surface (or volume
bounding box) in the direction of the ray.
For a given ray traversing the medium, the radiance derivatives

w.r.t. volume parameters 𝜽 are as follows.We separate and rearrange
the terms to explain their individual roles, as well as to map more
directly to the sampling algorithms. We omit the dependency on 𝝎
for conciseness. The first term captures how the in-scattered radiance
can increase due to a local density (𝜎𝑡 ) or albedo (𝛼) increase:

𝜕\𝐿𝑖 (x) =
∫ 𝑡𝑠

0
𝑇 (𝑡) 𝜕\

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝐿𝑠 (𝑡) d𝑡 · · · (5)

The second term describes how a density increase at an earlier
position 𝑡 ′ will attenuate the local contribution, whether from a
medium interaction (first row) or a surface (second row):

· · · +
∫ 𝑡𝑠

0
𝑇 (𝑡) 𝜎𝑡 (𝑡) 𝛼 (𝑡)

[∫ 𝑡

0
−𝜕\𝜎𝑡 (𝑡 ′) d𝑡 ′

]
𝐿𝑠 (𝑡) d𝑡

+𝑇 (𝑡𝑠 )
[∫ 𝑡𝑠

0
−𝜕\𝜎𝑡 (𝑡 ′) d𝑡 ′

] [
𝐿𝑒 (𝑡𝑠 ) + 𝐿𝑠 (𝑡𝑠 )

]
· · · (6)

1Gkioulekas et al. [2013], Equation (22), show that an uncorrelated set of paths must be
used to estimate the image loss and scene parameter gradients to obtain an unbiased
estimate of the overall gradients.

Finally, the third term captures changes in incident radiance after a
scattering event at 𝑡 in the medium or at 𝑡𝑠 on a surface. Changes
later along the path are weighted by the transmittance of the current
segment and the scattering coefficient of the current event:

· · · +
∫ 𝑡𝑠

0
𝑇 (𝑡) 𝜎𝑡 (𝑡) 𝛼 (𝑡) 𝜕\𝐿𝑠 (𝑡) d𝑡

+𝑇 (𝑡𝑠 )
[
𝜕\𝐿𝑒 (𝑡𝑠 ) + 𝜕\𝐿𝑠 (𝑡𝑠 )

]
. (7)

4.2 Free-Flight Based Gradient Estimators
Standard free-flight distance sampling proportional to 𝜎𝑡 (𝑡)𝑇 (𝑡),
such as by delta tracking, is well suited for the primal problem of
Equation (4): the probability density function cancels most factors.
However, using free-flight sampling to estimate the adjoint is prob-
lematic, as we will show below. Note its usage can be hidden, e.g.
when applying automatic differentiation to a volumetric path tracer.

Using free-flight importance sampling to sample the adjoint in-
tegrals (5)–(7) yields the following estimators. A valid free-flight
distance 𝑡 < 𝑡𝑠 is sampled within the medium with probability
𝜎𝑡 (𝑡) T(𝑡), resulting in a sample with contribution

⟨𝜕𝐿DT
1 ⟩ =

𝜕\
[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝜎𝑡 (𝑡)

𝐿𝑠 (𝑡) + 𝛼 (𝑡) 𝜕\𝐿𝑠 (𝑡) , (8)

Otherwise, if 𝑡 ≥ 𝑡𝑠 , the surface at 𝑡𝑠 is sampled with probability
T(𝑡𝑠 ), contributing:

⟨𝜕𝐿DT
2 ⟩ = 𝜕\𝐿𝑒 (𝑡𝑠 ) + 𝜕\𝐿𝑠 (𝑡𝑠 ) . (9)

In either case, transmittance gradients are accumulated at locations
𝑡 ′ along the ray segment (0,min(𝑡, 𝑡𝑠 )) corresponding to the location
of null-scattering interactions:

⟨𝜕𝐿DT
3 ⟩ =

{
−𝜕\𝜎𝑡 (𝑡 ′) 𝛼 (𝑡) 𝐿𝑠 (𝑡) if 𝑡 < 𝑡𝑠 ,

−𝜕\𝜎𝑡 (𝑡 ′)
[
𝐿𝑒 (𝑡𝑠 ) + 𝐿𝑠 (𝑡𝑠 )

]
otherwise.

(10)

We will refer to these estimators as “free-flight” as a shorthand for
free-flight sampling-based gradient estimators. There are two issues
with estimator ⟨𝜕𝐿DT

1 ⟩.

Bias. If the medium density 𝜎𝑡 (𝑡) is zero, estimator ⟨𝜕𝐿DT
1 ⟩ is

never sampled even though the integrand of Equation (5), respon-
sible for in-scattering gradients, is not zero. This results in bias.
Figure 4 illustrates this bias in a specially constructed worst-case
scenario, with 𝜎𝑡 (𝑡) initialized to zero. Since the background is
darker than the target image, transmittance gradients point in the
wrong direction: brightening the image would require increasing
transmittance by further lowering 𝜎𝑡 , which is not possible. Because
in-scattering gradients are missing, the optimization cannot escape
this initial state. Interestingly, an analogous situation arises for sur-
face BSDF optimization when the BSDF is exactly zero. In that case
however, it is legitimate to clamp BSDFs to a small nonzero value,
as truly black surfaces do not occur in normal circumstances.

Variance. Furthermore, if the density 𝜎𝑡 (𝑡) is close to zero, the
factor 1/𝜎𝑡 (𝑡 ) in Equation (8) leads to large outliers in gradients
w.r.t. density 𝜎𝑡 . Because distances are sampled proportional to
extinction-weighted transmittance, it may appear that the low prob-
ability of sampling 𝑡 where 𝜎𝑡 (𝑡) is small would compensate for
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Fig. 4. In this illustrative example, the medium density 𝜎𝑡 is optimized to match 32 reference images of a cloud (d). The initial state (a) is set to 𝜎𝑡 = 0. This
represents a worst-case scenario for the free-flight based gradient estimator (b): its bias prevents it from escaping the initial state. Indeed, in-scattering
gradients are missing where 𝜎𝑡 = 0 and transmittance gradients point in the direction opposite to the solution (i.e. further decreasing 𝜎𝑡 to increase brightness,
which is impossible). Our method correctly estimates in-scattering gradients even in empty space, which allows it to converge to a good solution (c).

the additional variance. However, Tregan et al. [2020] have shown
(for the case of a homogeneous slab) that the resulting variance is
actually unbounded2. Note that this issue occurs as well when using
the null-scattering integral formulation, see Appendix A. Gradients
w.r.t. albedo 𝛼 , however, are not affected.

The effect of these gradient outliers is illustrated on an inverse
rendering problem in Figure 1. Reconstruction becomes impossible
using standard stochastic gradient descent. Optimizers that track
gradient variance via second moments, such as Adam [Kingma and
Ba 2014], will at this point aggressively reduce the step size, enabling
acceptable convergence. Reconstructions, however, remain inferior
to that obtainable with the unbiased gradient estimators presented
in this article (Section 6.3).

Defensive sampling. A seemingly obvious solution to the problem
we have just identified would be to modify the sampling strategy to
include a constant “background density” 𝜖 :

𝑝def (𝑡) = (𝜎𝑡 (𝑡) + 𝜖) T𝜖 (𝑡) , (11)

which can be interpreted as a form of defensive sampling. If 𝜖 is
sufficiently large, the problematic term in the adjoint would no
longer produce gradient outliers:

1
𝜎𝑡 (𝑡) + 𝜖

≤ 1
𝜖
. (12)

While this may seem like a clear advantage, we must also consider
the effect of the modified density on all other terms of the adjoint.
Importantly, the unmodified density allowed path throughput to stay
close to one in Equations (8-9).With 𝑝def , non-unit samplingweights
compound over the length of the path. In a volumetric rendering con-
text where long paths are common, this can become problematic.
Moreover, recall that when using path replay backpropagation

(Section 3.2), the same paths must be constructed in phases (II) and
(III). This means that either the suboptimal defensive sampling strat-
egy must also be used to estimate the incident radiance terms in the
adjoint, injecting additional variance into the gradient estimates,
or defensive samples must be drawn in addition to the paths con-
structed in phases (II) and (III), increasing cost. In the following, we
2More precisely, the argument of Tregan et al. concerns variance due to the reciprocal
event of null scattering where 𝜎𝑛 ≈ �̄� , which is analogous to 𝜎𝑡 ≈ 0. See Appendix A.

will take the latter approach—drawing additional samples—however
using a sampling technique tailored to the integrand of Equation (5).

Alternative strategies. Adopting a ray marching-based estimator
would be susceptible to the same issues, even when ignoring the
bias due to the discretization of the transmittance function. Indeed,
the underlying density being sampled, 𝜎𝑡 (𝑡) T(𝑡), is identical to the
delta tracking-based estimator discussed above. Likewise, we did
not find reparameterizing the volume density, e.g. 𝜎𝑡 (𝑡) = log(\ (𝑡)),
to be a suitable solution—near-empty regions retain high-variance
gradients, and are moreover susceptible to vanishing gradients.

4.3 Unbiased Estimators
We have identified the 1/𝜎𝑡 term of Equation (8) to be the source of
bias and variance. Fundamentally, the issue stems from the direct
application of a primal sampling technique to the adjoint problem,
where the integrand is different. This same problem was identified
in other contexts by Zeltner et al. [2021]. We propose replacing the
problematic ⟨𝜕𝐿DT

1 ⟩ estimator with a simple, tailored estimator that
samples distances proportional to transmittance only.
The need to adopt a specialized sampling approach makes intu-

itive sense: regions of the medium with 𝜎𝑡 ≈ 0 are only sampled
rarely with primal sampling strategies (or not at all, if 𝜎𝑡 = 0). At
the same time, if transmittance is close to 1, then a small change
of 𝜎𝑡 can have a significant impact on the solution of Equation (5).
These regions therefore generate gradients during the adjoint trans-
port step and must receive sufficiently many samples to produce
low-variance gradient estimates. Sampling proportional to trans-
mittance addresses both the bias and variance issues discovered in
Section 4.2.

Assuming for a moment that we are able to sample 𝑡 ′ ∼ T(𝑡 ′), we
replace the two summands in ⟨𝜕𝐿DT

1 ⟩ (Equation (8)) by the following
two respective estimators:

⟨𝜕𝐿DRT
1𝑎 ⟩ := 𝐿𝑠 (𝑡 ′) 𝜕\

[
𝜎𝑡 (𝑡 ′) 𝛼 (𝑡 ′)

]
, (13)

⟨𝜕𝐿DRT
1𝑏 ⟩ := 𝛼 𝜕\𝐿𝑠 (𝑡) . (14)

Here, 𝑡 ′ is used only to sample in-scattering gradients ⟨𝜕𝐿DRT
1𝑎 ⟩

where the original strategy was problematic. For all other terms, 𝜎𝑡T
is a better suited density due to cancelling more factors, therefore
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we keep 𝑡 ∼ 𝜎𝑡T in ⟨𝜕𝐿DRT
1𝑏 ⟩ and set ⟨𝜕𝐿DRT

2 ⟩ := ⟨𝜕𝐿DT
2 ⟩ as well as

⟨𝜕𝐿DRT
3 ⟩ := ⟨𝜕𝐿DT

3 ⟩ to estimate the remaining terms.
Readers familiar with path replay backpropagation may notice

a potential drawback in Equation (13): because 𝑡 ′ is sampled from
a different strategy than the one used to construct the path, the
path replay algorithm cannot efficiently produce an estimate of
incident illumination 𝐿𝑖 at 𝑡 ′. In the worst case, we may have to
start a recursive path at each sampled point 𝑡 ′, raising the time
complexity to O(𝑛2). We will return to this issue in Section 4.7.

4.4 Sampling Proportional to Transmittance
We now turn to the derivation of our transmittance importance
sampling technique. To this end, we build over the family of delta-
[Butcher and Messel 1958; Woodcock et al. 1965] and ratio track-
ers [Novák et al. 2014].

Target distribution. Let us write down the density 𝑝T (𝑡) of this
hypothetical transmittance-based sampling strategy. Because T is
not a normalized density on its own, we must apply a normalization
constant defined in terms of an integral:

𝑝T (𝑡) =
T(𝑡)∫ 𝑡𝑠

0 T(𝑡 ′) d𝑡 ′
=

T(𝑡)
𝐶

. (15)

The unbiased estimation of such an integral in the reciprocal presents
a challenge. Moreover, T is itself defined in terms of an integral.
These circumstances prevent the use of standard methods like in-
verse transform sampling.

Note that there is an implicit assumption that 𝐶 remains finite,
which requires that the transmittance decays sufficiently quickly.
In practice, the scene would likely contain only media within lim-
ited spatial extent, in which case sampling can be restricted to this
volume to avoid this technicality. We have accounted for this as-
sumption by setting the integral’s upper limit to 𝑡𝑠 , the location of
the closest surface or medium bounding box along the ray.
It would seem that the presence of the normalizing constant 𝐶

forces us to revise the estimator of Equation (13) to

⟨𝜕𝐿DRT
1𝑎 ⟩ = 𝐶 𝐿𝑠 (𝑡 ′) 𝜕\

[
𝜎𝑡 (𝑡 ′) 𝛼 (𝑡 ′)

]
. (16)

However, instead of evaluating Equation (16) using unweighted
samples that are ideally proportional to the re-normalized trans-
mittance, we pursue a strategy that generates weighted samples. In
other words, the samples alone will not have the correct distribution,
but they will be distributed according to 𝑝T when considered along
with their weights. These weights will also serve a secondary pur-
pose: to provide an unbiased estimate of the normalization constant
𝐶 . Serendipitously, all of this is possible with a simple extension to
the family of delta- and ratio trackers.

Delta tracking. We start with a simple strategy based on the delta
tracking free-flight distance sampling method. On a given ray seg-
ment [0, 𝑡𝑠 ), delta tracking repeatedly samples steps 𝑡0 from a ho-
mogenized medium with density 𝜎 ≥ 𝜎𝑡 (𝑡) ∀𝑡 . At each step, the
nature of the interaction is determined stochastically: a real particle
is encountered with probability 𝜎𝑡 (𝑡 )/�̄� . Otherwise, a null particle is
encountered and the traversal continues.
If a real interaction occurs at 𝑡1 ∈ [0, 𝑡𝑠 ), light is scattered or ab-

sorbed and the ray throughput falls to zero. The free-flight distance

𝑡1 is sampled with probability 𝑝1 (𝑡) = 𝜎𝑡 (𝑡) T(𝑡). We can interpret
this randomized process as creating the following binary function
or “tracking”:

𝑓DT (𝑡) =
{

1 if 0 < 𝑡 ≤ min(𝑡1, 𝑡𝑠 ),
0 otherwise.

An example tracking is drawn in Figure 6 (left, blue curve). By
averaging together many such trackings, we obtain an unbiased
estimate of transmittance at all points.

Sampling from amedium realization. We could interpret each sam-
pled tracking 𝑓DT as the actual transmittance function of a particular
realization of the stochastic medium. We propose sampling propor-
tional to that transmittance function, and show that the resulting
density exactly corresponds to our target.

Given 𝑡1 ∼ 𝑝1 sampled by delta tracking, we simply sample a new
distance 𝑡2 := 𝑡1 𝑠 , with 𝑠 ∼ 𝑝𝑠 (𝑠) := 1[0,1) (𝑠). This step is illustrated
in Figure 6 (left, green arrow). Let us examine the corresponding
product density

𝑝2 (𝑡) =

∫ +∞

−∞
𝑝1

( 𝑡
𝑠

)
𝑝𝑠 (𝑠)

1
|𝑠 | d𝑠

=

∫ 1

0
𝑝1

( 𝑡
𝑠

) 1
𝑠

d𝑠

(1)
=

∫ +∞

𝑡

𝑝1 (𝑞)
1
𝑞

d𝑞 ,

where step (1) involves the change of integration variable 𝑞 := 𝑡/𝑠.
Unfortunately, 𝑝2 does not quite correspond to our desired density.
We correct it by associating a weight𝑤 := 𝑞 = 𝑡/𝑠 to each sample 𝑡 .
The weighted density is

𝑝2 (𝑡) =

∫ +∞

−∞
𝑝1

( 𝑡
𝑠

)
𝑝𝑠 (𝑠)

𝑡

𝑠

1
|𝑠 | d𝑠

(1)
=

∫ +∞

𝑡

𝑝1 (𝑞) d𝑞

=

∫ +∞

𝑡

𝜎𝑡 (𝑞) T(0, 𝑞) d𝑞

= T(0, 𝑡)
∫ +∞

𝑡

𝜎𝑡 (𝑞) T(𝑡, 𝑞) d𝑞 , (17)

where (1) denotes the same change of variable as before. Georgiev
et al. [2019, Equation (9)] have shown that transmittance can be
expressed as the following Volterra integral equation:

T(𝑎, 𝑏) = 1 −
∫ 𝑏

𝑎

𝜎𝑡 (𝑠) T(𝑠, 𝑏) d𝑠 .

Substituting into Equation (17) yields

𝑝2 (𝑡) = T(0, 𝑡) (1 − T(𝑡, +∞))
= T(0, 𝑡) − T(0, +∞) .

Finally, using our earlier assumption that the normalization constant
𝐶 is finite (in practice, equivalent to setting 𝜎𝑡 = +∞ beyond the
volume’s bounding box), we have T(0, +∞) = 0 and obtain

𝑝2 (𝑡) = T(0, 𝑡) .
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Fig. 5. Demonstrating our novel transmittance sampling methods based on delta- and (residual) ratio tracking. (a, bottom) We use a 1D analytic medium with
density following a sinusoidal function. The chosen majorant and control densities are also shown. (a, top) Forward rendering of such a medium involves
sampling free-flight distances proportional to 𝜎𝑡 (𝑡 ) T(𝑡 ) . Locations where 𝜎𝑡 ≈ 0 receive few or no samples, which leads to bias and high variance when using
this same sampling technique to estimate gradients. Instead, we propose dedicated transmittance sampling techniques for the adjoint. Delta tracking (b),
ratio tracking (c) and residual ratio tracking (d) can be interpreted as building estimates of the transmittance function using binary, piecewise constant and
piecewise-exponential functions respectively. We build transmittance sampling algorithms from those trackers by sampling distances from their individual
function approximations. They produce weighted samples (green histogram) with density equal to the transmittance function T, where the weights (yellow
histogram) approximate the normalization constant of T.
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Fig. 6. Our proposed sampling methods build on the family of delta- (left)
and ratio (right) trackers. The trackers build piecewise approximations 𝑓 of
the true transmittance function T. We simply sample a distance proportional
to the area under 𝑓 which, together with a sampling weight equal to the
total area under the curve, yields unbiased samples of T.

We conclude that the weighted samples (𝑡2,𝑤 = 𝑡2/𝑠) have the de-
sired distribution and call this sampling technique differential delta
tracking. In Figure 5b, we confirm experimentally that the weighted
density matches the transmittance of an example 1D medium slice.

Normalization constant. Further inspection reveals that the cho-
sen sampling weight is quite meaningful: 𝑡2/𝑠 = 𝑡1 is exactly the
area under the curve of the binary function 𝑓DT. In other words, it
captures the difference between our unnormalized target density 𝑇
and the normalized density we are actually sampling from. More-
over, by construction of delta tracking, the trackings approximate

the transmittance function [Novák et al. 2014]

E

[∫ 𝑡𝑠

0
𝑓DT (𝑠) d𝑠

]
= E[𝑡1] =

∫ 𝑡𝑠

0
T(𝑠) d𝑠 = 𝐶 . (18)

The sampling weight 𝑤 therefore takes on the role of 𝐶 in Equa-
tion (16), completing the estimator.

4.5 Differential Ratio Tracking
Using the same intuition, we can build a more efficient transmit-
tance sampling technique based on ratio tracking [Novák et al. 2014],
which is a simple and effective strategy that expands on delta track-
ing to compute unbiased estimates of the transmittance along a ray
segment (0, 𝑡𝑠 ). As before, successive steps 𝑡𝑖 are sampled in closed
form from a homogenized medium with density 𝜎 ≥ 𝜎𝑡 (𝑥) ∀𝑥 . How-
ever, rather than sampling a binary real/null decision at each step,
the probability of interacting with a real particle is used to update
the estimated transmittance up to the current point. This can be
interpreted as building a piecewise constant, rather than binary,
tracking. It approximates the transmittance function more closely:

𝑓RT (𝑡) =
∏

𝑡𝑖 ≤min(𝑡,𝑡𝑠 )
1 − 𝜎𝑡 (𝑡𝑖 )

𝜎
,

where 𝜎𝑡 (𝑡𝑖 )/�̄� is the probability of interacting with a real particle.
An example piecewise constant tracking 𝑓RT is drawn in Figure 6
(right, blue curve).

Sampling from ratio trackings. Following the same intuition as in
Section 4.4, we derive a transmittance sampling technique from the
ratio tracking algorithm. Where differential delta tracking simply
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needed to sample from the binary function 𝑓DT, we now need to
sample from the piecewise constant 𝑓RT.
Given a realization 𝑓RT, it is easy to build and sample from a

discrete 1D distribution based on the area under each constant
segment. Once a segment has been selected, we simply sample
uniformly along it. This step is illustrated in Figure 6 (right, green
arrow). As before, we associate a sampling weight 𝑤 equal to the
area under the curve of 𝑓RT:

𝑤 =
∑︁
𝑡𝑖

(𝑡𝑖+1 − 𝑡𝑖 ) 𝑓RT (𝑡𝑖 ) , (19)

with E[𝑤] = E

[∫ 𝑡𝑠

0
𝑓RT (𝑠) d𝑠

]
=

∫ 𝑡𝑠

0
T(𝑠) d𝑠 = 𝐶 . (20)

Due to the individual trackings’ closer match to the transmittance
curve, the sampling weights also converge faster to 𝐶 .

Online segment sampling. The sampling method described above
involves fully constructing a tracking 𝑓RT before sampling propor-
tional to its area. While this is certainly feasible, the storage and
computational overhead would be unnecessarily high, especially
considering that the number of segments is not known ahead of
time and grows with the majorant 𝜎 and total distance 𝑡𝑠 .
Instead, we turn to weighted reservoir sampling [Chao 1982] in

order to sample a segment online, simultaneously with ratio track-
ing. Desirably, reservoir sampling uses O(1) memory and has very
limited computational overhead.
At each step 𝑡𝑖 → 𝑡𝑖+1 of ratio tracking, we propose the corre-

sponding segment of 𝑓RT with weight equal to the area under it:

𝑤𝑖 = 𝑑𝑖 𝑓RT (𝑡𝑖 ) , with 𝑑𝑖 = 𝑡𝑖+1 − 𝑡𝑖 .

The reservoir is updated to this segmentwith probability𝑤𝑖/
∑𝑖

𝑗=1𝑤 𝑗 .
Once ratio tracking terminates by reaching the maximum distance
𝑡𝑠 , we read the values (𝑡𝑟 , 𝑑𝑟 ) from the reservoir. By construction
of reservoir sampling, this segment was sampled with probabil-
ity 𝑑𝑟 𝑓RT (𝑡𝑟 )/

∑
𝑗 𝑑 𝑗 𝑓RT (𝑡 𝑗 ). Moreover, the overall sample weight

𝑤 =
∑

𝑗 𝑑 𝑗 T(𝑡 𝑗 ) is readily available as it is computed as part of the
reservoir sampling algorithm.

We will refer to this estimator as differential ratio tracking. Its full
pseudocode is given in Listing 1. We also demonstrate it in action
on a 1D example in Figure 5c.

Differential residual ratio tracking. Finally, we can build a third
sampling technique based on residual ratio tracking [Novák et al.
2014]. Residual ratio tracking can be seen as applying ratio tracking
to a “residual medium” whose density is equal to the original density
minus a control density 𝜎𝑐 . The trackings are therefore further
improved from piecewise constant to piecewise-exponential. Some
example trackings are shown in Figure 5d.

Likewise, differential residual ratio tracking samples proportional
to the area under these trackings. In practice, we found that the lim-
ited improvement in gradient variance did not warrant the inclusion
of an additional hyperparameter (the control density). Our experi-
ments were therefore conducted with differential ratio tracking. For
completeness, the pseudocode is nevertheless given in Appendix B.

� �
def drt_sample(𝑡max):

Tr = 1.
trun = 𝑤acc = 0.

while trun < 𝑡max:
# Sample from the homogenized medium
dt = -log(1−rng() )/�̄�
dt = min(dt, 𝑡max - trun)
# Propose current constant segment with weight
# equal to area under the curve.
𝑤step = Tr * dt
𝑤acc += 𝑤step
if (rng() * 𝑤acc) < 𝑤step:

# Update reservoir (happens at least once)
reservoir = (trun, dt)

# Update transmittance estimate
Tr *= 1 - (𝜎𝑡 (trun) / �̄�)
trun = trun + dt

# Final uniform sampling over the chosen segment
t, dt = reservoir
t = t + rng() * dt
assert t ≤ 𝑡max
return t, 𝑤acc� �

Listing 1. Differential ratio tracking efficiently samples 𝑡 proportional to
transmittance T(𝑡 ) along the current ray up to 𝑡max by combining ratio
tracking and reservoir sampling. The sampling weight is an unbiased
estimate of the integral of transmittance𝐶 =

∫ 𝑡𝑠

0 𝑇 (𝑠) d𝑠 .

4.6 Multiple Importance Sampling
We now have at our disposal the standard free-flight sampling tech-
nique proportional to 𝜎𝑡T as well as our novel technique sampling
proportionally to T only. As was mentioned in Section 4.3, the for-
mer is well suited to sample all but the in-scattering gradient term.
Our sampling technique is used to estimate in-scattering gradi-

ents, with estimator ⟨𝜕𝐿DRT
1𝑎 ⟩. Since we will construct paths using

free-flight sampling in any case (and the incident radiance term 𝐿𝑖
at that point is provided by path replay), we may as well combine
the corresponding in-scattering gradients ⟨𝜕𝐿DT

1 ⟩ with ours using
multiple importance sampling [Veach and Guibas 1995].

The multiple importance sampling weights themselves are simple
to compute. For example, using the power heuristic:

𝑝DT (𝑡) = 𝜎𝑡 (𝑡)𝑇 (𝑡) , 𝑝DRT (𝑡) = 𝑇 (𝑡) ,

𝑤DT (𝑡) =
𝑝DT (𝑡)2

𝑝DT (𝑡)2 + 𝑝DRT (𝑡)2 =
𝜎𝑡 (𝑡)2

𝜎𝑡 (𝑡)2 + 1
, (21)

and 𝑤DRT (𝑡) =
1

𝜎𝑡 (𝑡)2 + 1
. (22)

Using multiple importance sampling, we improve variance at negli-
gible extra cost3.

4.7 Preserving Linear Time Complexity
Path replay backpropagation (Section 3.2) can estimate derivatives
in linear time. It is desirable that our method preserves this property.
Unfortunately, if Equation (13) were used as stated, our estimator
would require an additional estimate of incident illumination 𝐿𝑖 (𝑡 ′).
3Since𝑝DRT (𝑡 ) is unnormalized, variance reduction is neither guaranteed, nor governed
by the bounds proven by Veach and Guibas [1995]. Nonetheless, we observe significant
variance reduction in practice; see Figure 9d.
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This is because the distance 𝑡 ′ sampled by our estimator differs
from the distance sampled to build the path; thus, path replay does
not provide the needed value 𝐿𝑖 (𝑡 ′). Estimating 𝐿𝑖 (𝑡 ′) under global
illumination requires tracing a recursive path, resulting in an overall
O(𝑛2) cost when repeated at every bounce of the original path.
Instead, to maintain O(𝑛) cost, we select only a single bounce

of the original path, proportional to the throughput Tr(𝑑) of the
corresponding path segment, at which we evaluate ⟨𝜕𝐿DRT

1𝑎 ⟩. To
this end, we again use weighted reservoir sampling as the path
is traversed. The reservoir is updated proportional to Tr(𝑑) and
records the segment index as well as the necessary state to spawn
the recursive path. Due to spawning only a single recursive path,
its resulting estimate must be weighted by 𝑤 =

∑𝑛
𝑑=0 Tr(𝑑) (the

unnormalized inverse probability of being selected), where 𝑛 is the
path length. In Figure 8, we empirically validate that—while this
optimization increases gradient variance—it remains well below
that of delta tracking.

5 COMBATING LOCAL MINIMA
We have derived an estimator tailored to the estimation of gradients
with respect to heterogeneous medium parameters, eliminating the
bias and variance found in existing approaches. However, experience
shows that regardless of the estimator used, inverse rendering of
scattering media using gradient based optimization may not always
converge to a global minimum. We propose leveraging nonphys-
ical emissive volumes, whose convergence is better behaved, to
bootstrap the optimization of our scattering media.

5.1 Source of Local Minima
Given the complexity of the reconstruction problem and the pres-
ence of many ambiguities, it is understandable that the loss land-
scape may include many local minima. For an intuitive example,
consider the following situation: at a given stage of the optimization,
the objective function indicates that the brightness of a given pixel
should be increased to better match the reference image. At each
point along the paths contributing to this pixel, increasing local den-
sity increases in-scattered radiance at that point, but simultaneously
reduces transmittance and therefore attenuates contribution from
interactions further down the path. This delicate balance is captured
by the terms of opposite signs in Equation (5) and Equation (6).
In Figure 7, we plot the evolution of the objective function as

we interpolate from a converged optimization result to the ground
truth solution. While this is not an exhaustive exploration of the
local neighborhood (impractical due to the millions of medium
parameters), it suggests the presence of a local minimum.

5.2 Emissive Volume Conversion
On the other hand, nonphysical emissive volume representations
such as the one employed by NeRF [Mildenhall et al. 2020] and
subsequent works seem to converge to accurate solutions without
fault4. In our experience, this remains truewhen replacing the neural
network by a grid of interpolated values (similar observations were

4Here, by “accurate” we mean low training error in image space. The correspondence
of the reconstructed volume to its true shape (test error) additionally depends on a
sufficiently large number of training views to constrain the problem sufficiently.

− TargetResult

Fig. 7. Regardless of gradient quality, inverse rendering is prone to difficult
local minima. We compute the value of the re-rendering loss as we interpo-
late from the result of an optimization (top left image) to the ground truth
value (top right image). While this is not an exhaustive exploration of the
loss landscape (the volumetric model comprises 16+ million parameters), it
suggests the presence of a local minimum.

made by others [Sun et al. 2021a; Yu et al. 2021a]), and—in our simple
scenes—even when omitting directionally-dependent emission.
Relying on this property, we propose the following simple two

steps to optimize scattering volume parameters. First, reconstruct a
nonphysical emissive volume density 𝜎𝑡 and emission 𝐿𝑒 . This is
expected to converge fast both in terms of iteration count and run-
time: the maximum path depth is one (no scattering) and variance
is minimal. Second, use the recovered density 𝜎𝑡 to initialize the
optimization of the physical medium parameters 𝜎𝑡 and 𝛼 . The den-
sity 𝜎𝑡 will typically only require small adjustments—in particular
when low-order scattering is the dominant source of color—because
of the close resemblance between 𝐿𝑠 and 𝐿𝑒 in the radiative transfer
equation (2). The albedo 𝛼 , on the other hand, is easy to recover
because it linearly relates to pixel color; it is not affected by the
opposing gradients in Equation (5) and Equation (6) that govern
occlusion. We have experimented with different ways of converting
the previously optimized emission 𝐿𝑒 into initial albedo values to
bootstrap the second optimization, but did not find it to perform
better than initializing albedo from a constant value, e.g. 0.6. All
initializations led to rapid convergence.

We found this two-step optimization to be particularly helpful for
inverse rendering of dense objects: see for example the increased
sharpness in Figure 2c.

Alternative initialization. One may consider initializing the den-
sity 𝜎𝑡 in the second step from a number of other shape estimation
techniques such as silhouette carving [Laurentini 1994], multi-view
stereo [Jin et al. 2005], or COLMAP [Schönberger and Frahm 2016].
Unfortunately, many of these methods are not designed for partici-
pating media or semitransparent objects. Even when reconstruct-
ing just solid objects, the precise density values 𝜎𝑡 to extract from
hard surfaces is non-obvious. By bootstrapping from an emissive
volume, despite it being nonphysical, we directly obtain an inter-
pretable 𝜎𝑡 value. Moreover, emissive volume optimization is easily
implemented as a special case of scattering volume optimization.
Orthogonally, reparametrizations leveraging similarity relations can
be exploited to improve convergence [Zhao et al. 2014]. For surface
reconstructions, VolSDF [Yariv et al. 2021] could be substituted to
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Scene FD Free-flight Defensive Ours (quadratic) Ours (linear) 1e-4
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Max std. dev.: 4.24e-05 5.83e-01 2.71e-04 1.26e-05 2.29e-05 1e-4 0

1

2

Fig. 8. We validate gradients with respect to medium density 𝜎𝑡 in a synthetic scene (left). The mean gradient values (top row) and standard deviation (bottom
row) are shown for the slice 𝑧 = 15 of the dense 𝜎𝑡 3D parameter grid. Finite differences (FD) provide reference gradient values, but cannot be used in the inner
loop of an optimization due to the prohibitive runtime. Using a free-flight sampling based estimator (Section 4.2) to estimate gradients results in bias where
𝜎𝑡 = 0 (striped area) and high variance where 𝜎𝑡 ≈ 0 (also shown in Figure 1). Defensive sampling (Section 4.2) with 𝜖 = 0.1 mitigates the largest outliers, but
does not eliminate the remaining variance. Our novel sampling technique, whether used at each path segment (“quadratic”, Section 4.3) or once per path
(“linear”, Section 4.7) addresses both the bias and variance concerns.

the emissive volume model for a higher fidelity initialization, at the
cost of implementation complexity.

6 EVALUATION
We now turn to the evaluation of our proposed gradient estima-
tor and inverse rendering bootstrapping technique. An interactive
viewer showcasing inverse rendering results is accessible at:

https://rgl.epfl.ch/publications/NimierDavid2022Unbiased

6.1 Correctness and Variance
We first validate the correctness and efficiency of our method before
evaluating an inverse rendering application in Section 6.3.

Validation against finite differences. We have established that gra-
dients computed using free-flight sampling-based estimators can
suffer from bias and high variance. Figure 8 provides empirical verifi-
cation: we compare the mean gradients and their standard deviation
computed by several methods on the same dense medium, lit by
a realistic high dynamic range environment map. Specifically, we
compare reference gradients, computed by brute force using finite
differences (FD)—hence the low resolution—with free-flight sam-
pling, defensive sampling (Equation (11)), and two configurations of
our method: an O(𝑛2) implementation where our estimator is used
at every path segment, as well as our linear time variant.
As expected, gradients estimated using free-flight sampling ex-

hibit bias in empty regions (𝜎𝑡 = 0, striped area), as well as high
standard deviation, manifesting as large outliers, where density is
low. Using defensive sampling helps eliminate the largest outliers,
but standard deviation remains high due to the mismatch between
the sampling density and integrand. Our estimator yields correct

gradients as well as significantly lower standard deviation in both
the O(𝑛2) and O(𝑛) configurations.

Validation against analytic ground truth gradients in a simplified
setting is given in Appendix E.

Ablation study. We study the contribution of each component of
our method in Figure 9. The test medium contains empty, thin, and
dense regions, and is likewise lit by a realistic outdoor environment
map. Given initial medium density (𝜎𝑡 (𝑥), shown in the leftmost
column) and albedo parameters, we estimate gradients with respect
to 𝜎𝑡 (𝑥) using different estimators. Density is represented by a
trilinearly interpolated dense grid with resolution 256 × 128 × 128
(more than four million parameters). We then visualize the standard
deviation of gradients w.r.t. each 𝜎𝑡 value in a 2D slice of that grid.
We observe a very large standard deviation in regions of low

density when estimating gradients with the free-flight sampling-
based estimator (a). Note that due to in-scattering gradients being
entirely missing in empty regions (𝜎𝑡 = 0, striped area denoting
bias), variance is artificially low. Our method (b) fully eliminates
gradient outliers. In regions where 𝜎𝑡 = 0, variance is moderately
increased due to the (correct) inclusion of the in-scattering gradient
term. Reducing the sampling frequency from every path segment
to a single segment (c) brings our estimators’ complexity back to
linear time (Section 4.7), but also increases variance in regions of low
throughput such as the center of the dense smoke plume. However,
this is corrected by combining our estimator with regular free-flight
sampling via multiple importance sampling (d) (Section 4.6). We find
that switching to an estimator based on residual ratio tracking (e)
rather than ratio tracking does not bring noticeable improvements.
Likewise, increasing the medium’s majorant from 1.01 to 10 times
the largest 𝜎𝑡 value does not significantly improve gradient variance
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Fig. 9. Ablation study. We compare the standard deviation of gradients with respect to the density 𝜎𝑡 of the medium shown in the top-left rendering. Inverse
rendering of this medium is shown in Figure 11). The medium includes regions of high, low and zero density (bottom left). We show slice 𝑧 = 64 of parameter
space. (a) As was seen previously (Figure 8), free-flight based gradients are prone to large outliers where 𝜎𝑡 ≈ 0. Values outside of the visualization range
are denoted in red. In regions where 𝜎𝑡 = 0 (striped area), the missing in-scattering gradients (bias) lead to artificially low standard deviation. (b) Our
unbiased differential ratio tracking estimator resolves both the bias and variance issues when used on every path segment (leading to quadratic complexity). (c)
Selectively using our estimator once per path lowers the complexity back to linear time, but introduces additional variance in denser regions where path
throughput is lower. However, combining both techniques with multiple importance sampling (d) makes up for it at virtually no cost. Finally, switching to
differential residual ratio tracking (e) or increasing the medium majorant tenfold (f) does not seem to significantly improve standard deviation.

Table 1. We report the median cost per training iteration (s/it) for vanilla
path replay backpropagation [Vicini et al. 2021b] (free-flight) as well as with
our proposed O(𝑛) sampling technique enabled. Our extension involves
tracing an additional recursive path, which amounts to a ∼20% overhead. To
ensure the same experimental conditions, both methods compute gradients
w.r.t. the same starting medium, of which we report the mean optical depth
and maximum density. In practice, different optimization techniques lead
to different media, which additionally affects performance.

Optical depth Density 𝜎𝑡 Median runtime (s/it)
mean max Free-flight Ours

Dust devil 2.12 45.99 0.20 0.24
Red cow 2.45 12.87 0.32 0.37
Smoke plume 3.24 95.57 0.24 0.29

(f). In order to avoid the additional hyperparameter (medium con-
trol density) and additional computation cost respectively, we use
differential ratio tracking and a majorant of 1.01𝜎𝑡 in the remaining
experiments.
In Appendix E, we additionally study gradient variance against

the density and ratio of empty space of a test scene.

6.2 Performance
Compared with pure free-flight sampling in the path replay back-
propagation framework [Vicini et al. 2021b], our O(𝑛) algorithm
requires tracing one additional recursive path for each training path.
Table 1 shows that the recursive path amounts to an overhead of
∼20% in our implementation, provided that both algorithms com-
pute gradients w.r.t. the same starting medium. In practice, different

optimization techniques lead to different media, which additionally
affects performance.

We implemented both methods in Mitsuba 2 [Nimier-David et al.
2019]. The timings of Table 1 were measured on an NVIDIA RTX
3090 GPU. Appendix D contains additional implementation details.

6.3 Inverse Rendering
Given reference images and initial values for the medium proper-
ties of interest, we use gradient-based optimization to minimize
a re-rendering objective function. Note that our work focuses on
the effective estimation of gradients: assembling a fully robust re-
construction pipeline using real-world, imperfect data has its own
set of challenges. Therefore, we use synthetic scenes with known
camera parameters, illumination conditions, and isotropic phase
function. Since we target non-emissive objects, we only optimize
for 𝐿𝑒 in our initial stage of fitting a nonphysical, emissive volume
(Section 5.2). In the second stage of optimization, we set medium
emission 𝐿𝑒 to zero and require all color to originate from lighting
and the reconstructed scattering albedo 𝛼 . Consistently resolving
the additional ambiguities and complexity brought by a real-world
capture setup is an important direction for future work, most likely
involving domain-specific assumptions and inductive biases.

Experimental conditions. We implemented a differentiable volu-
metric path tracer with path replay backpropagation [Vicini et al.
2021b]. Unbiased global illumination is simulated with a path length
up to 64 vertices (although there is no particular limit, as all evalu-
ated methods have linear time complexity in path length). Scenes are
lit by realistic indoor and outdoor high dynamic range light probes.
All experiments that are not noted to use the initialization scheme
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of Section 5 use a coarse-to-fine approach. More details about the
experimental setup are given in Appendix C. Implementation details
and performance are discussed in Appendix D.

Role of the optimizer. When optimizing over a large parameter
space with noisy gradients, the choice of optimization algorithm
(optimizer) has a significant impact on convergence. As we have
seen, gradients computedwith free-flight sampling-based estimators
are prone to large outliers (Figure 9a). Using stochastic gradient
descent, either with- (SGDm) or without momentum (SGD), these
gradient outliers are almost directly reflected in the descent steps.
In practice, regions of the medium that should be fully empty end
up being filled with artifacts; see Figures 1, 10, and 11. The outliers
occur frequently enough that the optimization can never recover.
In contrast, variance-adaptive optimizers such as Adam [Kingma
and Ba 2014] are effective at suppressing such outliers—to a perhaps
surprising degree. The outliers merely trigger correspondingly low
step sizes. Because the outliers only occur in regions where 𝜎𝑡 ≈
0, the per-parameter step size being small in those regions does
not prevent the rest of the medium parameters from converging5.
Altogether, optimizations converge to comparatively good solutions
when using Adam, despite the numerous outliers.

Due to these significantly different outcomes, we report results
using both SGDm and Adam.

Inverse rendering results. We showcase equal-iterations inverse
rendering results on three solid objects (Figure 10) and two com-
plex heterogeneous participating media (Figure 11). The free-flight
sampling-based gradient estimator fails to converge on all scenes
when used together with SGDm (a). Using the Adam optimizer,
high gradient variance manifests instead as a persistent thin “haze”
around the reconstructed volumes (b). These artifacts are visible in
the included color-mapped density slices and are best appreciated
by flipping back and forth between images; please see the inter-
active viewer included in the supplemental material. Defensive
sampling (c), while eliminating the larger gradient outliers, does
not sufficiently reduce overall variance and therefore exposes the
same issues in the reconstructions.

Our proposed gradient estimator and initialization scheme achieve
the best reconstructions (e). The lowered gradient variance helps
eliminate the haze-like artifacts while the emissive initialization
helps converge to sharper results (see also Figure 2c). Note that
the reproduction of hard surfaces with volumes could be improved
by e.g. incorporating the non-exponential transmittance model of
Vicini et al. [2021a].

Relighting. A great advantage of using a fully physically based
and unbiased inverse rendering method is that it yields inherently
editable and relightable media. In Figure 12, we relight the recon-
structed medium using an environment that was not seen during
optimization. As expected, the NeRF-style nonphysical emissive
volume appears as in the original illumination, while ours reacts
correctly to the new conditions. Note that robustly disentangling
5Note this is only possible because the grid-based parameterization used in our experi-
ments maps parameter space directly to world space. If the medium was defined as e.g.
the result of a procedural computation, the aggressive reduction of step sizes may slow
or prevent overall convergence. Our method’s reduced gradient variance is then even
more advantageous.

lighting and reflectance for fully accurate relighting is challenging in
its own right and may require observations under different lighting
conditions.

7 CONCLUSION AND FUTURE WORK
The physically based differentiable rendering problem is being tack-
led from many angles: algorithms, discontinuities, systems, induc-
tive priors, implicit representations, etc. Among them, volumetric
representations have been particularly successful, due in part to
their seemingly trivial differentiability.
Our work shows that severe issues persist in existing gradient

estimation methods, leading to biased and high-variance gradients.
Adaptive optimizers such as Adam reduce the impact of poor-quality
gradients, which may be the reason these issues were not noticed
at first. We present a simple, unbiased method tailored to the es-
timation of gradients with respect to the parameters of scattering
volumes. Our estimator retains the linear time and constant memory
complexity of the state-of-the-art differentiable rendering algorithm
[Vicini et al. 2021b], allowing the efficient estimation of gradients
w.r.t. millions of parameters in parallel.

Additionally, we propose a simple way to leverage a nonphysical
emissive volume model to bootstrap the optimization of scattering
volumes, thus avoiding suboptimal local minima. In applications
where the availability of reference data is limited, such as cloud
tomography [Loeub et al. 2020], an interesting direction for future
work would be to further utilize the recovered emissive medium to
act as a proxy model from which imperfect, but infinite reference ob-
servations can be generated. In essence, the proposed initialization
scheme post-processes a non-physical model to introduce physical
realism. Generalizations of this idea, e.g. progressively increasing
the maximum path depth over the course of the optimization, should
be studied and compared in more detail.

Combined, our contributions allow the inverse rendering of chal-
lenging media and surfaces, recovering high-resolution density and
albedo parameters. The result is inherently editable and relightable.
Our evaluation focuses on synthetic scenes with known camera
parameters and illumination. We hope that our method can form
a building block for further applications, such as the inverse ren-
dering of real-life scenes with imperfect input and using complex
appearance models.

Finally, we believe the development of new sampling techniques
dedicated to gradients estimation is a highly promising direction
for future work.
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Fig. 10. Our method enables high-quality inverse rendering of complex objects under realistic illumination. We compare inverse rendering results from different
combinations of optimizer and gradient estimators. (a) We report the mean absolute percentage error computed on all 64 reference images after optimization.
(b) The high-variance gradients produced by the free-flight sampling based estimator prevent any convergence when optimizing with stochastic gradient
descent with momentum. (c) The Adam optimizer’s per-parameter adaptive step size significantly reduces the impact of gradient outliers. Nevertheless,
persistent haze-like artifacts remain present at the end of optimization. They are also visible in the false-color density slice visualizations. (d) Defensive
sampling (Section 4.2) prevents large gradient outliers but otherwise introduces additional variance, resulting in similar artifacts. (e) Our method uses a novel
sampling scheme dedicated to the adjoint to eliminate most of the gradient variance. Combined with our proposed emissive volume initialization (Section 5),
we achieve sharper reconstructions and eliminate haze artifacts.
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Fig. 11. Continued from Figure 10. Our method enables high-quality inverse rendering of heterogeneous scattering and absorbing media under realistic
illumination. The differences are best appreciated by flipping between the images, please see the interactive viewer available at: https://rgl.epfl.ch/
publications/NimierDavid2022Unbiased.
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Fig. 12. Nonphysical emissive volume models such as NeRFs [Mildenhall et al. 2021] and Plenoxels [Yu et al. 2021a] faithfully reproduce the target object, but
also “bake” the original lighting into the model parameters (b). Using a fully physically based volumetric model and inverse rendering pipeline, we obtain high
resolution density and albedo medium parameters. These parameters have a concrete physical meaning, and are inherently editable and relightable. When
re-rendered in previously unseen lighting conditions, our optimized models react correctly to the new illumination (c). Note that we did not attempt to model
more complex surface reflectance model (e.g. specular reflections), which are orthogonal to our method.
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et al. 2013; Kutz et al. 2017; Miller et al. 2019] is

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
𝜎 T̄(𝑡)

[
𝜎𝑎 (𝑡)
𝜎

𝐿𝑒 (𝑡) +
𝜎𝑠 (𝑡)
𝜎

𝐿𝑠 (𝑡,𝝎)

+ 𝜎𝑛 (𝑡)
𝜎

𝐿𝑖 (𝑡,𝝎)
]

d𝑡

+ T(𝑡𝑠 )
[
𝐿𝑒 (𝑡𝑠 ) + 𝐿𝑠 (𝑡𝑠 ,𝝎)

]
, (23)

where 𝑡𝑠 is the distance to the next surface along the ray (x,𝝎),
e.g. the medium’s boundary. T̄(𝑡) = exp (−𝜎 𝑡) corresponds to the
transmittance of the homogenized medium and 𝜎𝑛 = 𝜎 − 𝜎𝑡 .

Adjoint null-scattering radiative transfer equation. Assuming 𝐿𝑒 =

0 within the medium and using the 𝜽 = (𝜎𝑡 , 𝛼) parametrization,
Equation (23) simplifies to

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
𝜎 T̄(𝑡)

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

𝜎
𝐿𝑠 (𝑡,𝝎) +

𝜎𝑛 (𝑡)
𝜎

𝐿𝑖 (𝑡,𝝎)
]

d𝑡

+ T(𝑡𝑠 )
[
𝐿𝑒 (𝑡𝑠 ) + 𝐿𝑠 (𝑡𝑠 ,𝝎)

]
. (24)

In the following, we consider 𝜕\𝜎 = 0, as the majorant is constant.
Taking the derivative with respect to scene parameters 𝜽 and omit-
ting the dependence on 𝝎, we obtain the following terms. Similar to
Equation (13), the first term captures how the in-scattered radiance
can increase due to a local density increase:

𝜕\𝐿𝑖 =

∫ 𝑡𝑠

0
𝜎 T̄(𝑡)

𝜕\
[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝜎

𝐿𝑠 (𝑡) d𝑡 · · · (25)

Recalling that 𝜎𝑛 = 1 − 𝜎𝑡 , we see that the next expression has a
role similar to Equation (6)—it accounts for the density increases at
a positions prior to real interactions:

· · · +
∫ 𝑡𝑠

0
𝜎 T̄(𝑡) 𝜕\𝜎𝑛 (𝑡)

𝜎
𝐿𝑖 (𝑡) d𝑡

+𝑇 (𝑡𝑠 )
[∫ 𝑡𝑠

0
−𝜕\𝜎𝑡 (𝑡 ′) d𝑡 ′

] [
𝐿𝑒 (𝑡𝑠 ) + 𝐿𝑠 (𝑡𝑠 )

]
· · · (26)

The third expression captures changes later along the path, which
are weighted by the path throughput:

· · · +
∫ 𝑡𝑠

0
𝜎 T̄(𝑡)

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

𝜎
𝜕\𝐿𝑠 (𝑡) +

𝜎𝑛 (𝑡)
𝜎

𝜕\𝐿𝑖 (𝑡)
]

d𝑡

+𝑇 (𝑡𝑠 )
[
𝜕\𝐿𝑒 (𝑡𝑠 ) + 𝜕\𝐿𝑠 (𝑡𝑠 )

]
. (27)

Naïve estimators with null-scattering. Since the null-scattering
formulation implies sampling free-flight distances 𝑡 ∼ 𝜎 T̄(𝑡), it may
appear as if the problematic 1/𝜎𝑡 term discussed in Section 4.2 has
been avoided. However, it manifests at the very next step: once the
distance 𝑡 has been sampled from the homogenized medium, testing
whether a real or null (virtual) particle has been encountered is
determined by the probabilities

𝑝real (𝑡) =
𝜎𝑡 (𝑡)
𝜎

and 𝑝null (𝑡) =
𝜎𝑛 (𝑡)
𝜎

, (28)

reintroducing the problematic factor. Hence, the resulting estimators
of adjoint terms (25) and (26) suffer from the same issue as before:

⟨𝜕𝐿N
1 ⟩ =

𝜎

𝜎𝑡 (𝑡)
𝜕\

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝜎

𝐿𝑠 (𝑡)

=
𝜕\

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝜎𝑡 (𝑡)

𝐿𝑠 (𝑡) , (29)

and ⟨𝜕𝐿N
2 ⟩ =

𝜕\𝜎𝑛 (𝑡)
𝜎𝑛 (𝑡)

𝐿𝑖 (𝑡) . (30)

Symmetric issue in null interaction gradients. While we have fo-
cused our efforts on issues due to real interactions where 𝜎𝑡 ≈ 0,
Tregan et al. [2020] have identified a similar issue for 𝜎𝑛 ≈ 𝜎 , which
becomes apparent in Equation (30). Depending on the application,
selecting a sufficiently large majorant 𝜎 can be a practical way to
sidestep the problem. Another simple solution would be to estimate
transmittance gradients of Equations (10) and (26) not at locations
𝑡 ′ ∈ (0,min(𝑡, 𝑡𝑠 )) corresponding to null interactions, but rather
sampled uniformly at random on the segment. Since the integrands
do not include other factors beyond 𝜕\𝜎𝑡 , uniform sampling is appro-
priate. The estimator would then include a sampling weight equal
to the length of the segment. Our method generalizes the solution of
Tregan et al. by handling both the in-scattering and transmittance
gradient singularities.

In practice, we found transmittance gradients to be well-behaved
and did not observe significant differences between these alterna-
tives when using a majorant 1.01× larger than the maximum 𝜎𝑡
value.

B DIFFERENTIAL RESIDUAL RATIO TRACKING
While we decided not to use that variant in our experiments due to
the additional hyperparameter (medium control density), we include
the pseudocode for differential residual ratio tracking in Listing 2.

C EXPERIMENTAL SETTING
We provide more details about the inverse rendering experiments
presented in Section 6.3.
The optimization aims to minimize the 𝐿1 difference to the 64

reference images, with camera positions sampled uniformly in a
circle around the object at random altitudes. All optimizations were
run for 6000 iterations. In each iteration, a batch of 32768 pixels
is sampled uniformly from the set of all pixels from all reference
images. Primary rays are then sampled from within the footprint of
selected pixels.

In step (I) of path replay backpropagation (Section 3.2), the primal
value is estimated with 1024 samples per pixel, for a total of 33.5
million rays. The high-quality primal estimate is used to compute the
objective function. Steps (II) and (III) then use a second, uncorrelated
set of primary rays with 16 samples per pixel to estimate gradients.

As noted by Azinović et al. [2019], we found that allocating a high
sample count to the primal estimate results in better convergence,
especially in challenging volumetric scenes. Luckily, primal paths
are also less computationally intensive to evaluate.
In any given experiment, the same learning rate is used for all

estimators. This value must be adapted to the specific scene’s physi-
cal scale and any factor applied to the medium density. Intuitively,
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def drrt_sample(𝑡max):

Tr = 1.
trun = 𝑤acc = 0.

while trun < 𝑡max:
# Sample from the homogenized medium
dt = -log(1−rng() )/�̄�
dt = min(dt, 𝑡max - trun)

# Propose current exponential segment with weight
# equal to area under the curve.
𝑤step = Tr * (1 - exp(-dt 𝜎𝑐)) / 𝜎𝑐
𝑤acc += 𝑤step
if (rng() * 𝑤acc) < 𝑤step:

# Update reservoir (happens at least once)
reservoir = (trun, dt)

# Update transmittance estimate
Tr *= exp(-𝜎𝑐 dt) * (1 - (𝜎𝑡 (trun) − 𝜎𝑐 ) / �̄�)
trun = trun + dt

# Final sampling over the chosen exponential segment
t, dt = reservoir
t -= log(1 - rng() * (1 - exp(-𝜎𝑐 dt))) / 𝜎𝑐
assert t <= 𝑡max
return t, 𝑤acc� �

Listing 2. Differential residual ratio tracking pseudocode. 𝜎𝑐 is the control
density and �̄� the majorant of the residual medium: �̄� ≥ |𝜎𝑡 − 𝜎𝑐 |.
Similarly to differential ratio tracking (Listing 1), we combine the residual
ratio tracking transmittance estimator with reservoir sampling to produce
weighted samples 𝑡 with density equal to the transmittance function.

a scalar factor applied to the 𝜎𝑡 values would be reflected in the
gradients, resulting in a different effective step size. In practice, we
set the learning rate to values in the ranges 5 · 10−2 to 5 · 101 for
SGDm and 10−3 to 10−2 for Adam. It is automatically set twice as
high for the albedo parameters.
Results are shown at equal iteration count accross methods, as

the runtime depends not only on the chosen method but also on the
state of the reconstruction itself. Equal-time results would therefore
be difficult to interpret.
Several commonly used techniques further improve the quality

of the results: the optimization starts with 163 fewer parameters
than the desired resolution. The grid resolution is then doubled four
times during the optimization (coarse-to-fine). When using SGDm,
the learning rate is multiplied by 4 at each upsampling step. Finally,
the learning rate is halved six times over the last quarter of the
optimization.

D IMPLEMENTATION AND PERFORMANCE
All evaluated methods were implemented within a path replay back-
propagation integrator in Mitsuba 2 [Nimier-David et al. 2019].
Our implementation runs efficiently in reverse mode and on the
GPU, making it possible to optimize many parameters in parallel:
the medium density 𝜎𝑡 is typically represented by a 256×256×256
dense grid, and the single-scattering albedo 𝛼 by a 256×256×256×3
grid for a total of more than 67 million parameters. It is therefore
possible to optimize scattering volumes with full unbiased global
illumination, perhaps contrary to common belief.
Beyond important features such as next-event estimation, our

implementation includes support for a spatially-varying majorant

(to which our method is agnostic). Allowing the majorant to vary
on a coarse grid becomes important for performance when the
medium’s bounding box contains both very dense and very thin or
empty regions, see Section 3.1.
Compared to directly using the free-flight sampling technique

for gradient estimation, our method requires tracing one recursive
path per path in order to estimate incident illumination at the newly
sampled location. In practice, we found the additional overhead to
be relatively low compared to the expected 2× factor. In Table 1, we
report the median runtime per iteration on three different scenes
with different densities. One iteration includes the three steps of
path replay backpropagation described in Section 3.2, with next
event estimation and a maximum path length of 64. Timings were
measured on an NVIDIA RTX 3090 GPU over 50 runs.
Note that there remains room for optimization, for example us-

ing an adaptive voxel grid to store medium properties, porting
performance-critical functions to CUDA or adaptively sampling
primary rays based on the re-rendering error.

E ADDITIONAL VALIDATIONS
Correctness. We further validate our method’s correctness by

comparing the computed gradient to analytic ground truth values
in a simplified case. We consider a homogeneous, fully forward
scattering, non-emissive, single-scattering medium. The volume
rendering equation (2) then simplifies to:

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
T(0, 𝑡) 𝜎𝑠 (𝑡) 𝐿𝑠 (𝑡,𝝎) d𝑡 + T(0, 𝑡𝑠 ) 𝐿𝑒 (𝑡𝑠 ) (31)

Since the medium is fully forward scattering, 𝑓𝑠 (𝑥, 𝜔,𝝎 ′) = 𝛿 (𝝎 −
𝝎 ′) and therefore 𝐿𝑠 (𝑡,𝝎) = 𝐿1

𝑖
(𝑡,𝝎):

=𝜎𝑡 𝛼

∫ 𝑡𝑠

0
T(0, 𝑡) 𝐿1

𝑖 (𝑡,𝝎) d𝑡 + T(0, 𝑡𝑠 ) 𝐿𝑒 (32)

After an interaction within the single-scattering medium at 𝑡 , the ray
continueswithout further scattering, therefore𝐿1

𝑖
(𝑡,𝝎) = T(𝑡, 𝑡𝑠 ) 𝐿𝑒 (𝑡𝑠 ).

This drastically simplifies the expression of incident radiance:

=𝜎𝑡 𝛼

∫ 𝑡𝑠

0
T(0, 𝑡) T(𝑡, 𝑡𝑠 ) 𝐿𝑒 d𝑡 + T(0, 𝑡𝑠 ) 𝐿𝑒 (33)

=𝜎𝑡 𝛼 𝐿𝑒

∫ 𝑡𝑠

0
T(0, 𝑡𝑠 ) d𝑡 + T(0, 𝑡𝑠 ) 𝐿𝑒 (34)

=𝐿𝑒 T(𝑡𝑠 ) (𝜎𝑡 𝛼 𝑡𝑠 + 1) , (35)

which is easily evaluated in closed form.
We create a scene containing such a single-scattering medium

with 𝑡𝑠 = 𝐿𝑒 = 1. We then estimate density and albedo gradients
using both the free-flight based estimator (Section 4.2) and ours
(Section 4.3). The results are plotted as a function of the medium’s
density value in Figure 13. While all methods match the analytic
gradients, density gradients estimated with the free-flight estimator
suffer from high variance as 𝜎𝑡 approaches zero. Our estimator
computes unbiased and low-variance gradients.

Variance. In Figure 15, we study the effect of the proportion of
empty space and the density of a volume on the standard deviation of
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Fig. 13. In a single-scattering, fully forward scattering homogeneous medium, we compare the gradients computed by the standard free-flight based estimator
and our method to the ground truth analytic gradients. While all methods compute correct gradients in this setting for all 𝜎𝑡 > 0, we note once again that
free-flight based gradients suffer from high standard deviation as 𝜎𝑡 approaches zero (shaded area, left plot). With our estimator, the standard deviation is low
enough not to appear on the plots.

Sc
al
e𝑠

=
8.

00

𝑟 = 0.00 𝑟 = 0.20 𝑟 = 0.40 𝑟 = 0.60 𝑟 = 0.80 𝑟 = 1.00

Fig. 14. Preview of the scene used in Figure 15 for density scale 0.8, with filling ratio 𝑟 varying from 0 to 1. Note that the density is generated following a 3D
Gaussian, therefore even areas appearing bright in the image have a small, but nonzero density.

1 2 4 8 16 32
Density scale

0.0

0.2

0.4

0.6

0.8

1.0

Fi
lli
ng

ra
tio

Free-flight

106

1022

10−6

10−3

1 2 4 8 16 32
Density scale

Defensive (ϵ = 10−3)

1 2 4 8 16 32
Density scale

Defensive (ϵ = 10−2)

1 2 4 8 16 32
Density scale

Defensive (ϵ = 10−1)

1 2 4 8 16 32
Density scale

Ours (quadratic)

1 2 4 8 16 32
Density scale

Ours (linear)

Fig. 15. Effect of the proportion of empty space and the density of a volume on the standard deviation of gradients. For each method, we show the average
standard deviation of 𝜎𝑡 gradients for combinations of (𝑠, 𝑟 ) parameters. To visualize standard deviation values spanning many orders of magnitude, we use a
log-scaled colormap. A discontinuity in the mapping is introduced to represent extreme variance from the free-flight estimator in the low 𝜎𝑡 regime.

gradients computed by various estimators. The test scene, visualized
in Figure 14, contains a heterogeneous medium with density:

𝜎𝑡 (x) = 𝑠 exp
(
−1

2

(
x − 0.5

𝑟/6

)2)
, (36)

where the parameters 𝑠 and 𝑟 control the overall medium density
and proportion of empty space respectively. The medium albedo and
environment illumination are constant (𝛼 = (0.8, 0.7, 0.9), 𝐿𝑒 = 1).
The average standard deviation of density gradients are shown for
various combinations of (𝑠, 𝑟 ) parameters and gradient estimators in

Figure 15. For all combinations ofmedium scale and filling ratio, both
our quadratic and linear complexity estimators achieve significantly
lower standard deviation than the evaluated baselines.
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