
Neural Importance Sampling

THOMAS MÜLLER, Disney Research & ETH Zürich

BRIAN MCWILLIAMS, Disney Research

FABRICE ROUSSELLE, Disney Research

MARKUS GROSS, Disney Research & ETH Zürich

JAN NOVÁK, Disney Research

We propose to use deep neural networks for generating samples in Monte

Carlo integration. Our work is based on non-linear independent compo-

nents estimation (NICE), which we extend in numerous ways to improve

performance and enable its application to integration problems. First, we

introduce piecewise-polynomial coupling transforms that greatly increase

the modeling power of individual coupling layers. Second, we propose to

preprocess the inputs of neural networks using one-blob encoding, which

stimulates localization of computation and improves inference. Third, we de-

rive a gradient-descent-based optimization for the KL and the χ 2
divergence

for the specific application of Monte Carlo integration with unnormalized

stochastic estimates of the target distribution. Our approach enables fast and

accurate inference and efficient sample generation independently of the di-

mensionality of the integration domain. We show its benefits on generating

natural images and in two applications to light-transport simulation: first,

we demonstrate learning of joint path-sampling densities in the primary

sample space and importance sampling of multi-dimensional path prefixes

thereof. Second, we use our technique to extract conditional directional

densities driven by the product of incident illumination and the BSDF in

the rendering equation, and we leverage the densities for path guiding. In

all applications, our approach yields on-par or higher performance than

competing techniques at equal sample count.

CCS Concepts: • Computing methodologies → Neural networks; Ray
tracing; Supervised learning by regression; Reinforcement learning; • Mathe-
matics of computing→ Sequential Monte Carlo methods.

ACM Reference Format:
Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan

Novák. 2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Arti-
cle 145 (July 2019), 19 pages. https://doi.org/10.1145/3341156

1 INTRODUCTION

Solving integrals is a fundamental problem of calculus that appears

in many disciplines of science and engineering. Since closed-form

antiderivatives exist only for elementary problems, many applica-

tions resort to numerical recipes. Monte Carlo (MC) integration is

one such approach, which relies on sampling a number of points

within the integration domain and averaging the integrand thereof.

Authors’ addresses: Thomas Müller, Disney Research & ETH Zürich, thomas94@gmx.

net; BrianMcWilliams, Disney Research, bvpmcwilliams@gmail.com; Fabrice Rousselle,

Disney Research, fabrice.rousselle@gmail.com; Markus Gross, Disney Research & ETH

Zürich, grossm@inf.ethz.ch; Jan Novák, Disney Research, novakj4@gmail.com.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version of record was published in ACM Transactions on

Graphics.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2019/7-ART145

https://doi.org/10.1145/3341156

The main drawback of MC methods is the relatively low conver-

gence rate. Many techniques have thus been developed to reduce

the integration error, e.g. via importance sampling, control variates,

Markov chains, integration on multiple accuracy levels, and use of

quasi-random numbers.

In this work, we focus on the concept of importance sampling

and propose to parameterize the sampling density using a collec-

tion of neural networks. Generative neural networks have been

successfully leveraged in many fields, including signal processing,

variational inference, and probabilistic modeling, but their applica-

tion to MC integration—in the form of sampling densities—remains

to be investigated; this is what we strive for in the present paper.

Given an integral

F =

∫
D

f (x) dx , (1)

we can introduce a probability density function (PDF) q(x), which,
under certain constraints, allows expressing F as the expected ratio

of the integrand and the PDF:

F =

∫
D

f (x)

q(x)
q(x) dx = E

[
f (X)

q(X)

]
. (2)

The above expectation can be approximated using N independent,

randomly chosen points {X1,X2, · · ·XN };Xi ∈ D,Xi ∼ q(x), with
the following MC estimator:

F ≈ ⟨F ⟩N =
1

N

N∑
i=1

f (Xi)

q(Xi)
. (3)

The variance of the estimator, besides being inversely proportional

to N , heavily depends on the shape of q. If q follows normalized f
closely, the variance is low. If the shapes of the two differ signifi-

cantly, the variance tends to be high. In the special case when sam-

ples are drawn from a PDF proportional to f (x), i.e. p(x) ≡ f (x)/F ,
we obtain a zero-variance estimator, ⟨F ⟩N = F , for any N ≥ 1.

It is thus crucial to use expressive sampling densities that match

the shape of the integrand well. Additionally, generating sample Xi
must be fast (relative to the cost of evaluating f), and invertible. That
is, given a sample Xi , we require an efficient and exact evaluation of

its corresponding probability density q(Xi)—a necessity for evaluat-

ing the unbiased estimator of Equation (3) . Being expressive, fast

to evaluate, and invertible are the key properties of good sampling

densities, and all our design decisions can be traced back to these.

We focus on the general setting where little to no prior knowl-

edge about f is given, but f can be observed at a sufficiently high

number of points. Our goal is to extract the sampling PDF from these

observations while handling complex distributions with possibly

many modes and arbitrary frequencies. To that end, we approximate

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

https://doi.org/10.1145/3341156
https://doi.org/10.1145/3341156

145:2 • Müller et al.

the ground-truth p(x) using a generative probabilistic parametric

model q(x ;θ) that utilizes deep neural networks.

Our work builds on approaches that are capable of compactly

representing complex manifolds in high-dimensional spaces, and

permit fast and exact inference, sampling, and PDF evaluation. We

extend the work of Dinh et al. [2014, 2016] on learning stably in-

vertible transformations, represented by so-called coupling layers,
that are stacked to produce highly nonlinear mappings between an

observation x and a latent variable z. Specifically, we introduce two
types of piecewise-polynomial coupling layers—piecewise-linear and
piecewise-quadratic—that greatly increase the expressive power of

individual coupling layers, allowing us to employ fewer of those

and thereby reduce the total cost of evaluation.

After reviewing related work on generative neural networks in

Section 2, we detail the framework of non-linear independent com-
ponents estimation (NICE) [Dinh et al. 2014, 2016] in Section 3; this

forms the foundation of our approach.

In Section 4, we describe a new class of invertible piecewise-
polynomial coupling transforms that replace affine transforms pro-

posed in the original work. We also introduce the one-blob-encoding
of network inputs, which stimulates localization of computation and

improves inference. We illustrate the benefits on low-dimensional

regression problems and test the performance when learning a

(high-dimensional) distribution of natural images.

In Section 5, we apply NICE to Monte Carlo integration and pro-

pose an optimization strategy for minimizing estimation variance.

Finally in Section 6, we present the benefits of using NICE in light-

transport simulations. We use NICE with our polynomial warps to

guide the construction of light paths and demonstrate that, while

currently being impractical due to large computational overhead,

it outperforms the state of the art at equal sample counts in path
guiding and primary-sample-space path sampling. We combine our

path-guiding distribution with other sampling distributions using

multiple importance sampling (MIS) [Veach and Guibas 1995] and

use a dedicated network to learn the approximately optimal selection

probabilities to further improve the MIS performance.

In summary, our contributions are

• two piecewise-polynomial coupling transforms (piecewise-

linear and piecewise-quadratic) that improve expressiveness,

• one-blob-encoded network inputs—a generalization of one-

hot encoding—for improving learning speed and quality,

• stochastic gradients that can be used for optimizing the KL

and χ2 divergences when only MC estimates of the unnor-

malized target distribution are available, and

• an application of NICE with the aforementioned tools to the

problem of light-transport simulation with

• data-driven probabilities for selecting sampling techniques.

2 BACKGROUND AND RELATED WORK

Since our goal is to learn a probability distribution and—among other

things—draw samples from it, our approach falls into the category of

generative modeling. In the following, we review the most relevant

generative neural networks focusing on the requirements for MC

integration. Specifically, we seek a model that provides a parametric

PDF q(x ;θ) for approximating the ideal PDF p(x) ≡ f (x)/F . We

also need an optimization scheme that tolerates noisy estimates of

the integrand f (x). Lastly, the trained model must permit efficient

sampling and evaluation of q(x ;θ).
Several prior generative models were built on less stringent re-

quirements. For example, it is often the case that only the synthesis
of samples is required without explicitly evaluating q(x ;θ) [Ger-
main et al. 2015; Goodfellow et al. 2014; van den Oord et al. 2016a,b].

These models are thus not easily applicable to MC integration in

the aforementioned manner. In the following, we focus on existing

techniques that show promise in satisfying our requirements.

The Latent-Variable Model. Many existing generative models rely

on auxiliary unobserved “latent” variables z with fixed, prescribed

PDF q(z), where each possible value of z gives rise to a unique

conditional distribution q(x |z;θ) that is learnable via parameters θ .
Since any particular value of x can be caused by multiple different

values of z, one must resort to integration to obtain q(x ;θ)

q(x ;θ) =

∫
q(x |z;θ)q(z) dz . (4)

In this context, q(x ;θ) is referred to as the “marginal likelihood”

and q(z) as the “prior distribution”. The prior is often modeled as a

simple distribution (e.g. Gaussian or uniform) and it is the task of a

neural network to learn the parameters of q(x |z;θ).
Unfortunately, the above integral is often not solvable in closed

form, necessitating its estimation with another MC estimator. It may

be tempting to use such estimates of q(x ;θ) in the denominator of

our desired MC estimator

⟨F ⟩N ≈
1

N

N∑
i=1

f (Xi)

⟨q(Xi)⟩
,

but this scheme introduces undesirable bias
1
.

Normalizing Flows. To avoid the limitation of having to estimate

q(x ;θ), a growing literature emerged that models x as a determinis-

tic bijective mapping of z, a so-called “normalizing flow” x = h(z;θ).
This has the effect of assigning only a single value of x to each

possible value of z (and vice versa), thereby avoiding the difficult in-

tegration when computing the likelihood. Mathematically, q(x |z;θ)
becomes a Dirac-delta function δ

(
x − h(z;θ)

)
, resulting in

q(x ;θ) =

∫
δ
(
x − h(z;θ)

)
q(z) dz = q(z)

���� det (∂h(z;θ)∂zT

) ����−1 . (5)

Here, the inverse Jacobian determinant accounts for the change in

density due to h in the infinitesimal neighborhood around x .
Although Equation (5) no longer contains a difficult integral,

there exist a number of additional requirements on h to make the

usage ofq(x ;θ) inMC integration practical. Sinceq(x ;θ) is expressed
in terms of z, one must know the value of z that corresponds to x .
Generally, this requires a tractable inverse z = h−1(x).2 Additionally,
to ensure efficiency, the evaluation of both h and h−1 as well as the
corresponding Jacobian determinant must be fast relative to the

cost of evaluating f .

1
This can be verified using Jensen’s inequality.

2
MC estimators that only sample from q(x ; θ) are an exception, because they can

simply use the z that generated x . However, when combining multiple PDFs using

MIS heuristics [Veach and Guibas 1995] one must be able to evaluate q(x ; θ) for x that

were drawn from the other distributions.

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:3

Prior Work on Normalizing Flows. In the following, we mention

a number of existing techniques based on normalizing flows that

satisfy some (but not necessarily all) of our requirements.

Rezende and Mohamed [2015] model the posterior distribution

using normalizing flows to perform variational inference more effec-

tively. Unfortunately, their computation graph is difficult to invert,

not permitting exact evaluation of q(x ;θ).
Chen et al. [2018] propose a continuous analog of normalizing

flows that utilizes the instantaneous change-of-variable formula,

which only requires computing the trace of the Jacobian as opposed

to the determinant. This reduces computational cost in many situa-

tions. Unfortunately, the evaluation of their continuous normalizing

flows relies on a numeric ODE solver, which reintroduces computa-

tional cost in other places and results in approximation error when

computing q(x ;θ). This approximation causes bias in our use case

of MC integration and therefore disqualifies their approach.

A number of recent approaches investigate the usage of normaliz-

ing flows for auto-regressive density estimation [Huang et al. 2018;

Kingma et al. 2016; Papamakarios et al. 2017]. These “autoregressive

flows” offer the desired exact evaluation of q(x ;θ). Unfortunately,
they generally only permit either efficient sample generation or
efficient evaluation of q(x ;θ), which makes them prohibitively ex-

pensive for our application to MC integration.

Lastly, “non-linear independent components estimation” (NICE)

[Dinh et al. 2014, 2016] is a special case of autoregressive flows that

allows both fast sampling and density evaluation through the use

of so-called “coupling layers”, the composition of which constitutes

a normalizing flow. Because of NICE’s efficient sample generation

and its efficient, exact density evaluation, NICE satisfies all our pos-

tulated requirements for usage in MC integration and we therefore

base our work on it. Concurrently with us, Zheng and Zwicker

[2018] also investigate the applicability of NICE to MC integration.

Kingma and Dhariwal [2018] extend the work of Dinh et al. [2016]

with invertible 1×1 convolutions, achieving better results. The 1×1

convolutions, however, require a deep computation graph to be

effective, which is oppsite to the shallow computation graph we

desire for efficiency.We therefore do not adopt the 1×1 convolutions.

In the following section, we introduce NICE in detail and pro-

ceed with describing our piecewise-polynomial coupling layers that

increase its modeling capacity.

3 NON-LINEAR INDEPENDENT COMPONENTS

ESTIMATION

In this section, we detail the works of Dinh et al. [2014, 2016] that

form the basis of our approach. The authors propose to learn a

mapping between the data and the latent space as an invertible

compound function ĥ = hL ◦ · · · ◦ h2 ◦ h1, where each hi is a

relatively simple bijective transformation (warp). The choice of the

type of h is different in the two prior works and in our paper (details

follow in Section 4), but the key design principle remains: h needs

to be stably invertible with (computationally) tractable Jacobians.

This enables exact and fast inference of latent variables as well as

exact and fast probability density evaluation: given a differentiable

mapping h : X → Y of points x ∼ pX(x) to points y ∈ Y, we can

compute the PDF pY (y) of transformed points y = h(x) using the

...

Coupling layer h1 h2 hL

x z

Partition A

Partition B

xA

xB

yA

yB

m(xA)

C(xB ;m(xA))

Fig. 1. A coupling layer splits the input x into two partitions A and B . One
partition is left untouched, whereas dimensions in the other partition are

warped using a parametric coupling transform C driven by the output of a

neural networkm. Multiple coupling layers may need to be compounded

to achieve truly expressive transforms.

change-of-variables formula:

pY (y) = pX(x)

���� det (∂h(x)∂xT

) ����−1 , (6)

where
∂h(x)
∂xT is the Jacobian of h at x .

The cost of computing the determinant grows superlinearly with

the dimensionality of the Jacobian. IfX andY are high-dimensional,

computing pY (y) is therefore computationally intractable. The key

proposition of Dinh et al. [2014] is to focus on a specific class of

mappings—referred to as coupling layers—that admit Jacobian ma-

trices where determinants reduce to the product of diagonal terms.

3.1 Coupling Layers

A single coupling layer takes a D-dimensional vector and partitions

its dimensions into two groups. It leaves the first group intact and

uses it to parameterize the transformation of the second group.

Definition 3.1 (Coupling layer). Let x ∈ RD be an input vector,

A and B denote disjoint partitions of [[1,D]], andm be a function

on R |A |
, then the output of a coupling layer y = (yA,yB) = h(x) is

defined as

yA = xA , (7)

yB = C
(
xB ;m(xA)

)
, (8)

where the coupling transform C : R |B | × m(R |A |) → R |B |
is a

separable and invertible map.

The invertibility of the coupling transform, and the fact that

partition A remains unchanged, enables a trivial inversion of the

coupling layer x = h−1(y) as:

xA = yA , (9)

xB = C−1
(
yB ;m(xA)

)
= C−1

(
yB ;m(yA)

)
. (10)

If partition A was allowed to change arbitrarily, then the inversion

(precisely the input tom in Equation (10)) would be difficult to find.

The invertibility is crucial in our setting as we require both density

evaluation and sample generation in Monte Carlo integration.

The second important property of C is separability. Separable C
ensures that the Jacobian matrix is triangular and the determinant

reduces to the product of diagonal terms; see Dinh et al. [2014] or

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

145:4 • Müller et al.

Appendix A for a full treatment. The computation of the determinant

thus scales linearly with D and is therefore tractable even in high-

dimensional problems.

3.2 Affine Coupling Transforms

Additive Coupling Transform. Dinh et al. [2014] describe a very

simple coupling transform that merely translates the signal in indi-

vidual dimensions of B:

C(xB ; t) = xB + t , (11)

where the translation vector t ∈ R |B |
is produced by functionm(xA).

Multiply-add Coupling Transform. Since additive coupling layers

have unit Jacobian determinants, i.e. they preserve volume, Dinh

et al. [2016] propose to add a multiplicative factor es :

C(xB ; s, t) = xB ⊙ es + t , (12)

where ⊙ represents element-wise multiplication and vectors t and

s ∈ R |B |
are produced bym: (s, t) =m(xA). The Jacobian determi-

nant of a multiply-add coupling layer is simply e
∑
si
.

The coupling transforms above are relatively simple. The trick

that enables learning nonlinear dependencies across partitions is
the parametric functionm. This function can be arbitrarily complex,

e.g. a neural network, as we do not need its inverse to invert the

coupling layer and its Jacobian does not affect the determinant

of the coupling layer (cf. Appendix A). Using a sophisticated m
allows extracting complex nonlinear relations between the two

partitions. The coupling transform C , however, remains simple,

invertible, and permits tractable computation of determinants even

in high-dimensional settings.

3.3 Compounding Multiple Coupling Layers

As mentioned initially, the complete transform between the data

space and the latent space is obtained by chaining a number of cou-

pling layers. A different instance of neural networkm is trained for

each coupling layer. To ensure that all dimensions can be modified,

the output of one layer is fed into the next layer with the roles of the

two partitions swapped; see Figure 1. Compounding two coupling

layers in this manner ensures that every dimension can be altered.

The number of coupling layers required to ensure that each dimen-

sion can influence every other dimension depends on the total num-

ber of dimensions. For instance, in a 2D setting (where each partition

contains exactly one dimension) we need only two coupling layers.

3D problems require three layers, and for any high-dimensional

configuration there must be at least four coupling layers.

In practice, however, high-dimensional problems (e.g. generat-

ing images of faces), require significantly more coupling layers

since each affine transform is fairly limited. In the next section,

we address this limitation by providing more expressive mappings

that allow reducing the number of coupling layers and thereby the

sample-generation and density-evaluation costs. This improves the

performance of Monte Carlo estimators presented in Section 6.

4 PIECEWISE-POLYNOMIAL COUPLING LAYERS

In this section, we propose piecewise-polynomial invertible maps

as coupling transforms instead of the limited affine warps reviewed

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

0.00 0.20 0.40 0.55 0.70 1.00

0

1

2

3

0.00 0.20 0.40 0.55 0.70 1.00

0

1

Target

Fit

Network prediction: qi =
∂Ci (x

B
i)

∂xBi
Coupling transform: Ci (xBi)

P
/
w
-
l
i
n
e
a
r

P
/
w
-
q
u
a
d
r
a
t
i
c

Fig. 2. Predicted probability density functions (PDFs, left) and correspond-

ing cumulative distribution functions (CDFs, right) with K = 5 bins fitted to

a target distribution (dashed). The top row illustrates a piecewise-linear CDF

and the bottom row a piecewise-quadratic CDF. The piecewise-quadratic

approximation tends to work better in practice thanks to its first-order conti-

nuity (C1
) and adaptive bin sizing. In Appendix B we show that, in contrast

to piecewise-quadratic CDFs, adaptive bin sizing is difficult to achieve for

piecewise-linear CDFs with gradient-based optimization methods.

previously. Specifically, we introduce the usage of piecewise poly-

nomials with degrees 1 and 2, i.e. piecewise-linear and piecewise-

quadratic warps. In contrast to Dinh et al. [2014, 2016], who assume

x,y ∈ (−∞,+∞)D and Gaussian latent variables, we choose to oper-

ate in a unit hypercube (i.e. x,y ∈ [0, 1]D) with uniformly distributed

latent variables, as most practical problems span a finite domain.

Unbounded domains can still be handled by warping the input of

h1 and the output of hL e.g. using the sigmoid and logit functions.

Similarly to Dinh and colleagues, we ensure computationally

tractable Jacobians via separability. We transform each dimension

independently:

C
(
xB ;m(xA)

)
=

(
C1

(
xB
1
;m(xA)

)
, · · · , C |B |

(
xB
|B |

;m(xA)
))T
.

(13)

Operating on unit intervals allows interpreting the warping function

Ci as a cumulative distribution function (CDF). To produce each Ci ,
we instrument the neural network to output the corresponding un-

normalized probability density qi , and construct Ci by integration;

see Figure 2 for an illustration.

In order to further improve performance, we propose to encode

the inputs to the neural network using one-blob encoding, which we

discuss in Section 4.3.

4.1 Piecewise-Linear Coupling Transform

Motivated by their simplicity, we begin by investigating the simplest

continuous piecewise-polynomial coupling transforms: piecewise-

linear ones. Recall that we partition the D-dimensional input vector

in two disjoint groups, A and B, such that x = (xA, xB). We divide

the unit dimensions in partition B into K bins of equal widthw =
K−1

. To define all |B | transforms at once, we instrument the network

m(xA) to predict a |B | × K matrix, denoted Q̂ . Each i-th row of Q̂
defines the unnormalized probability mass function (PMF) of the

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:5

normalizenormalize

integrate

concatenate

normalize

U
-
s
h
a
p
e
n
e
t
w
o
r
k
m

C
o
u
p
l
i
n
g
t
r
a
n
s
f
o
r
m
s

optional

extra

features

xA One-blob encoding

Piecewise-linear PDF q1

xB
1

bin b

Piecewise-quadratic warp C1

xB
1

yB
1

bin b

V W

xB yB

normalize normalize

integrate

concatenate

C1(xB
1
)

C2(xB
2
)

C3(xB
3
)

C4(xB
4
)

ReLU

Fig. 3. Our coupling layer with a piecewise-quadratic transform for |B | = 4.

Signals in partition A (and additional features) are encoded using one-blob

encoding and fed into a U-shape neural networkm with fully connected lay-

ers. The outputs ofm are normalized yielding matricesV andW that define

warping PDFs. The PDFs are integrated analytically to obtain piecewise-

quadratic coupling transforms; one for warping each dimension of xB .

warp in i-th dimension in xB ; we normalize the rows using the

softmax function σ and denote the normalized matrixQ ;Qi = σ (Q̂i).

The PDF in i-th dimension is then defined as qi (x
B
i) = Qib/w ,

where b = ⌊KxBi ⌋ is the bin that contains the scalar value xBi . We

integrate the PDF to obtain our invertible piecewise-linear warp Ci :

Ci (x
B
i ;Q) =

∫ xBi

0

qi (t) dt = αQib +

b−1∑
k=1

Qik , (14)

where α = KxBi − ⌊KxBi ⌋ represents the relative position of xBi in b.
In order to evaluate the change of density resulting from the

coupling layer, we need to compute the determinant of its Jacobian

matrix; see Equation (6) . Since C(xB ;Q) is separable by definition,

its Jacobian matrix is diagonal and the determinant is equal to the

product of the diagonal terms. These can be computed using Q :

det

(
∂C

(
xB ;Q

)
∂(xB)

T

)
=

|B |∏
i=1

qi (x
B
i) =

|B |∏
i=1

Qib
w
, (15)

whereb again denotes the bin containing the value in the i-th dimen-

sion. To reduce the number of binsK required for a good fitwewould

like the network to also predict bin widths. These can unfortunately

not easily be optimized with gradient descent in the piecewise-linear
case; see Appendix B. To address this, and to improve accuracy, we

propose piecewise-quadratic coupling transforms.

4.2 Piecewise-Quadratic Coupling Transform

Piecewise-quadratic coupling transforms admit a piecewise-linear

PDF, which we model using K + 1 vertices; see Figure 2, bottom left.

We store their vertical coordinates (for all dimensions in B) in |B | ×
(K + 1) matrix V , and horizontal differences between neighboring

vertices (bin widths) in |B | × K matrixW .

The network m outputs unnormalized matrices Ŵ and V̂ . We

again normalize thematrices using the standard softmaxWi = σ (Ŵi),

and an adjusted version in the case of V :

Vi , j =
exp

(
V̂i , j

)
∑K
k=1

exp

(
V̂i ,k

)
+exp

(
V̂i ,k+1

)
2

Wi ,k

, (16)

where the denominator ensures that Vi represents a valid PDF.

The PDF in dimension i is defined as

qi (x
B
i) = lerp(Vib ,Vib+1,α) , (17)

where α = (xBi −
∑b−1
k=1Wik)/Wib represents the relative position of

scalar xBi in bin b that contains it, i.e.

∑b−1
k=1Wik ≤ xBi <

∑b
k=1Wik .

The invertible coupling transform is obtained by integration:

Ci (x
B
i ;W ,V) =

α2

2

(Vib+1 −Vib)Wib + αVibWib (18)

+

b−1∑
k=1

Vik +Vik+1
2

Wik . (19)

Note that inverting Ci (x
B
i ;W ,V) involves solving the root of the

quadratic term, which can be done efficiently and robustly.

Computing the determinant of the Jacobian matrix follows the

same logic as in the piecewise-linear case, with the only difference

being that we must now interpolate the entries of V in order to

obtain the PDF value at a specific location (cf. Equation (17)).

4.3 One-Blob Encoding

An important consideration is the encoding of the inputs to the

network. We propose to use the one-blob encoding—a generalization
of the one-hot encoding [Harris and Harris 2013]—where a kernel

is used to activate multiple adjacent entries instead of a single one.

Assume a scalar s ∈ [0, 1] and a quantization of the unit interval into

k bins (we use k = 32). The one-blob encoding amounts to placing

a kernel (we use a Gaussian with σ = 1/k) at s and discretizing it

into the bins. With the proposed architecture of the neural network

(placement of ReLUs in particular, see Figure 3), the one-blob en-

coding effectively shuts down certain parts of the linear path of the

network, allowing it to specialize the model on various sub-domains

of the input.

In contrast to one-hot encoding, where the quantization causes a

loss of information if applied to continuous variables, the one-blob

encoding is lossless; it captures the exact position of s .

4.4 Analysis

We compare the proposed piecewise-polynomial coupling trans-

forms to multiply-add affine transforms [Dinh et al. 2016] on a 2D

regression problem in Figure 4. To produce columns 1–5, we sam-

ple the 2D domain using uniform i.i.d. samples (16 384 samples per

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

145:6 • Müller et al.

Dinh et al. [2016] Ours (L=2)

Affine (L=2) Affine (L=4) Affine (L=16) P/w-linear P/w-quadratic Reference KL divergence Variance

100

102

Affine 2

Affine 4

Affine 16

P/w linear

P/w quad.

10−1

101

103

0 2.5k 5k

Training steps

0 2.5k 5k

Training steps

10−1

100

101

Fig. 4. Our 32-bin piecewise-linear (4-th column) and 32-bin piecewise-quadratic (5-th column) coupling layers achieve superior performance compared to

affine (multiply-add) coupling layers [Dinh et al. 2016] on low-dimensional regression problems. The false-colored distributions were obtained by optimizing

KL divergence with uniformly drawn i.i.d. samples (weighted by the reference value) over the 2D image domain. The plots on the right show logarithmically

scaled training error (KL divergence) and the variance of estimating the average image intensity when drawing samples from one of the distributions.

Affine (L=16) Piecewise-linear (L=2) Piecewise-quadratic (L=2)

scalar encoding one-blob encoding scalar encoding one-blob encoding scalar encoding one-blob encoding Reference

Fig. 5. Comparison of results with and without the one-blob encoding. The experimental setup is the same as in Figure 4. While the affine coupling transforms

fail to converge with one-blob-encoded inputs, the distributions learned by the piecewise-polynomial coupling functions become sharper and more accurate.

training step), evaluate the reference function (column 6) at each

sample, and optimize the neural networks that control the coupling

transforms using KL divergence described in Section 5.1. We also

ran the same experiment with equally weighted i.i.d. samples drawn

proportional to the reference function—i.e. in a density-estimation

setting—producing near-identical results (not shown). Every per-

layer network has a U-net (see Figure 3) with 8 fully connected

layers, where the outermost layers contain 256 neurons and the

number of neurons is halved at every nesting level. We use 2 ad-

ditional layers to adapt the input and output dimensionalities to

and from 256, respectively. The networks only differ in their output

layer to produce the desired parameters of their respective coupling

transform (s and t , Q̂ , or Ŵ and V̂).

We use adaptive bin sizes only in the piecewise-quadratic cou-

pling transforms because gradient descent fails to optimize them in

the piecewise-linear case as demonstrated in Appendix B.

When using L = 2 coupling layers—i.e. 2 × 10 fully connected

layers—the piecewise-polynomial coupling layers consistently per-

form better thanks to their significantly larger modeling power,

and outperform even large numbers (e.g. L = 16) of multiply-add

coupling layers, amounting to 16 × 10 fully connected layers.

Figure 5 demonstrates the benefits of the one-blob encoding when

combined with our piecewise coupling transforms. While the en-

coding helps our coupling transforms to learn sharp, non-linear

functions more easily, it also causes the multiply-add transforms of

Dinh et al. [2016] to produce excessive high frequencies that inhibit

convergence. Therefore, in the rest of the paper we use the one-blob

encoding only with our piecewise-polynomial transforms; results

with affine transforms do not utilize one-blob encoded inputs.

We tested the piecewise-quadratic coupling layers also on a high-

dimensional density-estimation problem: learning the manifold of a

specific class of natural images. We used the CelebFaces Attributes

dataset [Liu et al. 2015] and reproduced the experimental setting of

Dinh et al. [2016]. Our architecture is based on the authors’ publicly

available implementation and differs only in the used coupling layer

and the depth of the network—we use 4 recursive subdivisions

while the authors use 5, resulting in 28 versus 35 coupling layers.

We chose K = 4 bins and did not use our one-blob encoding due

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:7

Examples from the training set Generated novel images Manifold spanned by four images

Fig. 6. Generative modeling of facial photographs using the architecture of Dinh et al. [2016] with our piecewise-quadratic coupling transform. We show

training examples (left), faces generated by our trained model (middle), and a manifold of faces spanned by linear interpolation of 4 training examples in

latent space (right; training examples are in the corners). We achieve validation results of slightly better quality than Dinh et al. [2016] in terms of negative

log-likelihood (2.89 vs. 3.02 bits per dimension), suggesting that our approach could also benefit high-dimensional problems, though one may not achieve the

same magnitude of improvements as in low-dimensional settings.

to GPU memory constraints. Since our coupling layers operate on

[0, 1]D , we do not use batch normalization on the transformed data.

Figure 6 shows a sample of the training set, a sample of generated

images, and a visualization of the manifold given by four different

faces. The visual quality of our results is comparable to those ob-

tained by Dinh and colleagues. We perform marginally better in

terms of negative log-likelihood (lower means better): we yield 2.85

and 2.89 bits per dimension on training and validation data, respec-

tively, whereas Dinh et al. [2016] reported 2.97 and 3.02 bits per

dimension. We tried decreasing the number of coupling layers while

increasing the number of bins within each of them, but the results

became overall worse. We hypothesize that the high-dimensional

problem of learning distributions of natural images benefits more

from having many coupling layers rather than having fewer but

expressive ones.

5 MONTE CARLO INTEGRATION WITH NICE

In this section, we apply the NICE framework to Monte Carlo inte-

gration. Our goal is to reduce estimation variance by extracting sam-

pling PDFs from observations of the integrand. Denoting q(x ;θ) the
to-be-learned PDF for drawing samples (θ represents the trainable

parameters) and p(x) the ground-truth distribution of the integrand,

we can rewrite the MC estimator from Equation (3) as

⟨F ⟩N =
1

N

N∑
i=1

f (Xi)

q(Xi ;θ)
=

1

N

N∑
i=1

p(Xi) F

q(Xi ;θ)
. (20)

In the ideal case when q(x ;θ) = p(x), the estimator returns the exact

value of F . Our objective here is to leverage NICE to learn q from
data while optimizing the neural networks in coupling layers so

that the distance between p and q is minimized.

We follow the standard approach of quantifying the distance using

one of the commonly used divergence metrics. While all divergence

metrics reach their minimum if both distributions are equal, they

differ in shape and therefore produce different q in practice.

In Section 5.1, we optimize using the popular Kullback-Leibler

(KL) divergence. We further consider directly minimizing the vari-

ance of the resulting MC estimator in Section 5.2 and demonstrate

that it is equivalent to minimizing the χ2 divergence.

5.1 Minimizing Kullback-Leibler Divergence

Most generative models based on deep neural networks do not

allow evaluating the likelihoodq(x ;θ) of data points x exactly and/or

efficiently. In contrast, our work is based on bijective mappings with

tractable Jacobian determinants that easily permit such evaluations.

In the following, we show that minimizing the KL divergence with

gradient descent amounts to maximizing a weighted log likelihood.

The KL divergence between p(x) and the learned q(x ;θ) reads

DKL(p ∥ q;θ) =

∫
Ω
p(x) log

p(x)

q(x ;θ)
dx

=

∫
Ω
p(x) logp(x) dx −

∫
Ω
p(x) logq(x ;θ) dx︸ ︷︷ ︸
Cross entropy

. (21)

To minimize DKL with gradient descent, we need its gradient with

respect to the trainable parameters θ . These appear only in the

cross-entropy term, hence

∇θDKL(p ∥ q;θ) = −∇θ

∫
Ω
p(x) logq(x ;θ) dx (22)

= E

[
−

p(X)

q(X ;θ)
∇θ logq(X ;θ)

]
, (23)

where the expectation is overX ∼ q(x ;θ), i.e. the samples are drawn

from the learned generative model
3
. In most integration problems,

p(x) is only accessible in an unnormalized form through f (x):p(x) =
f (x)/F . Since F is unknown—this is what we are trying to estimate

3
If samples could be drawn directly from the ground-truth distribution—as is common

in computer vision problems—the stochastic gradient would simplify to that of just the

log likelihood. We discuss a generalization of log-likelihood maximization.

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

145:8 • Müller et al.

in the first place—the gradient can be estimated only up to the global

scale factor F . This is not an issue since common gradient-descent-

based optimization techniques such as Adam [Kingma and Ba 2014]

scale the step size by the reciprocal square root of the gradient

variance, cancelling F . Furthermore, if f (x) can only be estimated

via Monte Carlo, the gradient is still correct due to the linearity of

expectations. Equation (23) therefore shows that minimizing the

KL divergence via gradient descent is equivalent to minimizing the

negative log likelihood weighted by MC estimates of F .

5.2 Minimizing Variance via χ 2 Divergence

Themost attractive quantity to minimize in the context of (unbiased)

Monte Carlo integration is the variance of the estimator. Inspired by

previous works that strive to directly minimize variance [Herholz

et al. 2018, 2016; Pantaleoni and Heitz 2017; Vévoda et al. 2018],

we demonstrate how this can be achieved for the MC estimator

p(X)/q(X ;θ), with X ∼ q(x ;θ), via gradient descent. We begin with

the variance definition and simplify:

V

[
p(X)

q(X ;θ)

]
= E

[
p(X)2

q(X ;θ)2

]
− E

[
p(X)

q(X ;θ)

]
2

=

∫
Ω

p(x)2

q(x ;θ)
dx −

(∫
Ω
p(x) dx

)
2

︸ ︷︷ ︸
1

. (24)

The stochastic gradient of the variance for gradient descent is then

∇θV

[
p(X)

q(X ;θ)

]
= ∇θ

∫
Ω

p(x)2

q(x ;θ)
dx

=

∫
Ω
p(x)2 ∇θ

1

q(x ;θ)
dx

=

∫
Ω
−
p(x)2

q(x ;θ)
∇θ logq(x ;θ) dx

= E

[
−

(
p(X)

q(X ;θ)

)
2

∇θ logq(X ;θ)

]
. (25)

Relation to the Pearson χ2 divergence. Upon close inspection it

turns out the variance objective (Equation 24) is equivalent to the

Pearson χ2 divergence Dχ 2 (p ∥ q;θ):

Dχ 2 (p ∥ q;θ) =

∫
Ω

(p(x) − q(x ;θ))2

q(x ;θ)
dx

=

∫
Ω

p(x)2

q(x ;θ)
dx −

(
2

∫
Ω
p(x) dx −

∫
Ω
q(x ;θ) dx

)
︸ ︷︷ ︸

1

.

(26)

As such,minimizing the variance of aMonte Carlo estimator amounts

to minimizing the Pearson χ2 divergence between the ground-truth

and the learned distributions.

Connection between the χ2 and KL divergences. Notably, the gra-
dients of the KL divergence and the χ2 divergence differ only in the

weight applied to the log likelihood. In ∇θDKL the log likelihood is

weighted by the MC weight, whereas when optimizing ∇θDχ 2 , the

log likelihood is weighted by the squared MCweight. This illustrates

the difference between the two loss functions: the χ2 divergence
penalizes large discrepancies stronger, specifically, low values of

q in regions of large density p. As such, it tends to produce more

conservative q than DKL, which we observe in Section 6 as fewer

outliers at the cost of slightly worse average performance.

6 NEURAL PATH SAMPLING AND PATH GUIDING

In this section, we take NICE (Section 3) with piecewise-polynomial

warps (Section 4) and apply it to sequential MC integration of light

transport using the methodology described in Section 5. Our goal is

to reduce estimation variance by “guiding” the construction of light

paths using on-the-fly learned sampling densities. We explore two

different settings: a global setting that leverages the path-integral

formulation of light transport and employs high-dimensional sam-

pling in the primary sample space (PSS) to build complete light-path

samples (Section 6.1), and a local setting, natural to the rendering

equation, where the integration spans a 2D (hemi-)spherical domain

and the path is built incrementally (Section 6.2).

6.1 Primary-Sample-Space Path Sampling

In order to produce an image, a renderer must estimate the amount

of light reaching the camera after taking any of the possible paths

through the scene. The transport can be formalized using the path-

integral formulation [Veach 1997], where a radiance measurement

I to a sensor (e.g. a pixel) is given by an integral over path space P:

I =

∫
P

Le(x0, x1)T (x)W (xk−1, xk) dx . (27)

The chain of positions x = x0 · · · xk represents a single light path

with k vertices. The path throughputT (x) quantifies the ability of x
to transport radiance. Le represents emitted radiance andW is the

sensor response to one unit of incident radiance.

The measurement can be estimated as

⟨I ⟩ =
1

N

N∑
j=1

Le(xj0, xj1)T (x j)W (xjk−1, xjk)
q(x j)

, (28)

whereq(x) is the joint probability density of generating all k vertices

of path x . Drawing samples from the joint distribution is challenging

due to the constrained nature of vertices; e.g. they have to reside on

surfaces. Several approaches thus propose to operate in the primary

sample space (PSS) [Kelemen et al. 2002] represented by a unit

hypercubeU. A path is then obtained by transforming a vector of

random numbers z ∈ U using one of the standard path-construction

techniques ρ (e.g. camera tracing): x = ρ(z).
Operating in PSS has a number of compelling advantages. The

sampling routine has to be evaluated only once per path, instead

of once per path vertex, and the generic nature of PSS coordinates

enables treating the path construction as a black box. Importance

sampling of paths can thus be applied to any single path-tracing

technique, and, with some effort, also to multiple strategies [Guo

et al. 2018; Hachisuka et al. 2014; Kelemen et al. 2002; Lafortune

and Willems 1995; Veach and Guibas 1994; Zheng and Zwicker

2018]. Lastly, the sampling routine directly benefits from existing

importance-sampling techniques in the underlying path-tracing

algorithm since thosemake the path-contribution function smoother

in PSS and thus easier to learn.

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:9

Methodology. Given that NICE scales well to high-dimensional

problems, applying it in PSS is straightforward. We split the di-

mensions of U into two equally-sized groups A and B, where A
contains the even dimensions and B contains the odd dimensions.

One group serves as the input of the neural network (each dimension

is processed using the one-blob encoding) while the other group is

being warped; their roles are swapped in the next coupling layer.

To infer the parameters θ of the networks, we minimize one of the

losses from Section 5 against p(x) = Le(x0, x1)T (x)W (xk−1, xk) F−1,
ignoring the unknown normalization factor, i.e. assuming F = 1.

In order to obtain a path sample x , we generate a random vector

z, warp it using the reversed inverted coupling layers, and apply the

path-construction technique: x = ρ
(
h−1
1

(
· · ·h−1L (z)

))
; please refer

back to Equation (9) and (10) for details on the inverses.

Before we analyze the performance of primary-sample-space path

sampling in Section 6.4, we discuss a slightly different approach

to data-driven construction of path samples—the so-called path

guiding—which applies neural importance sampling at each vertex

of the path and typically yields higher performance.

6.2 Path Guiding

A popular alternative to formalizing light transport using the path-

integral formulation is to adopt a local view and focus on the radia-

tive equilibrium of individual points in the scene. The equilibrium

radiance at a surface point x in directionωo is given by the rendering

equation [Kajiya 1986]:

Lo(x,ωo) = Le(x,ωo) +

∫
Ω
L(x,ω)fs(x,ωo,ω)| cosγ | dω , (29)

where fs is the bidirectional scattering distribution function,Lo(x,ωo),

Le(x,ωo), and L(x,ω) are respectively the reflected, emitted, and in-

cident radiance, Ω is the unit sphere, and γ is the angle between ω
and the surface normal.

The rendering task is formulated as finding the outgoing radiance

at points directly visible from the sensor. The overall efficiency

of the renderer heavily depends on the variance of estimating the

amount of reflected light:

⟨Lr(x,ωo)⟩ =
1

N

N∑
j=1

L(x,ωj)fs(x,ωo,ωj)| cosγj |

q(ωj |x,ωo)
. (30)

A large body of research has therefore focused on devising sampling

densities q(ω |x,ωo) that yield low variance. While the density is

defined over a 2D space, it is conditioned on position x and direction
ωo. These extra five dimensions make the goal of q(ω |x,ωo) ∝

L(x,ω)fs(x,ωo,ω)| cosγ | substantially harder.

Since the 7D domain is fairly challenging to handle using hand-

crafted, spatio-directional data structures in the general case, most

research has focused on the simpler 5D setting where q(ω |x,ωo) ∝

L(x,ω) [Dahm and Keller 2018; Hey and Purgathofer 2002; Jensen

1995; Müller et al. 2017; Pegoraro et al. 2008a,b; Vorba et al. 2014]

and only a few attempts have been made to consider the full prod-

uct [Herholz et al. 2018, 2016; Lafortune and Willems 1995; Stein-

hurst and Lastra 2006]. These path-guiding approaches rely on

carefully chosen data structures (e.g. BVHs, kD-trees) in combina-

tion with relatively simple PDF models (e.g. histograms, quad-trees,

Gaussian mixture models), which are populated in a data-driven

manner either in a pre-pass or online during rendering. Like in previ-

ous works our goal is to learn local sampling densities, but we differ

in that we utilize NICE to represent and sample from q(ω |x,ωo).

Methodology. We use a single instance of NICE, which is trained

and sampled from in an interleaved manner: drawn samples are

immediately used for training, and training results are immediately

used for further sampling. In the most general setting, we consider

learning q(ω |x,ωo) that is proportional to the product of all terms

in the integrand. Since the integration domain is only 2D, partitions

A and B in all coupling layers contain only one dimension each—one

of the two cylindrical coordinates that we use to parameterize the

sphere of direction.

To produce the parameters of the first piecewise-polynomial cou-

pling function, the neural networkm takes the cylindrical coordinate

from A, the position x and direction ωo that condition the density,

and additional information that may improve inference; we also

input the normal of the intersected shape at x to aid the network in

learning distributions that correlate with the local shading frame.

We one-blob-encode all of the inputs as described in Section 4.3

with k = 32. In the case of x, we normalize it by the scene bounding

box, encode each coordinate independently, and concatenate the re-

sults into a single array of 3×k values. We proceed analogously with

directions, which we parameterize using world-space cylindrical

coordinates: we transform each coordinate to [0, 1] interval, encode

it, and append to the array. The improved performance enabled by

our proposed one-blob encoding is reported in Table 1.

At any given point during rendering, a sample is generated by

drawing a random pair u ∈ [0, 1]2, passing it through the inverted

coupling layers in reverse order, h−1
1
(· · ·h−1L (u)), and transforming

to the range of cylindrical coordinates to obtain ω.

MIS-Aware Optimization. In order to optimize the networks, we

use Adam with one of the loss functions from Section 5, but with an

important, problem-specific alteration. To sample ω, most current

renderers apply multiple importance sampling (MIS) [Veach and

Guibas 1995] to combine multiple sampling densities, each tailored

to a specific component of the integrand (direct illumination, BSDF,

etc.). When learning the product, we take this into account by opti-

mizing the networks with respect to the final effective PDF q′ instead
of the density learned using NICE. If certain parts of the product

are already covered well by existing densities, the networks will be

optimized to handle only the remaining problematic case.

We minimize D(p ∥ q′), where D is either DKL or Dχ 2 divergence,

and we employ the balance heuristic [Veach and Guibas 1995]

for combining the learned distribution q and the BSDF distribu-

tion pfs . This yields the following effective PDF q′ = cq + (1 − c)pfs ,
where c is the probability of drawing samples from q. The ideal PDF
p(ω |x,ωo) = L(x,ω)fs(x,ωo,ω)| cosγ |F

−1
is evaluated ignoring the

normalization constant F (as discussed in Section 5.1).

Learned Selection Probabilities. To further reduce variance we

use an additional network m̂ that learns approximately optimal

selection probability c = l
(
m̂(x,ωo)

)
, where l is the logistic function.

We optimize m̂ jointly with the other networks; all use the same

architecture except for the last layer. To prevent overfitting to local

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

145:10 • Müller et al.

optima with degenerate selection probability, we use loss funtion

β(τ)D(p ∥ q)+
(
1− β(τ)

)
D(p ∥ q′) where τ ∈ [0, 1] is the fraction of

exhausted render budget (either time or sample count) and β(τ) =
1/2 · (1/3)5τ .

Since we employ the balance heuristic, which is provably optimal

in the context of the MIS one-sample model [Veach 1997], learning

the selection probabilities is the only means to further improve

the performance, for instance by shutting down MIS completely in

situations when it may hurt (e.g. on near-specular surfaces).

It is worth noting, however, that learning also the MIS weights

(instead of relying on the balance heuristic) would remove the need

to evaluate all relevant distributions for each sample. This would

remove one of the requirements that we stated in Section 2, namely

the need for tractable inverses, thereby extending the set of admis-

sible generative models; we leave this branch of investigations as

future work.

BSDFs with Delta Components. BSDFs that are a mixture of Dirac-

delta and smooth functions—such as smooth plastic—require special

handling. While our stochastic gradient in Section 5 is, in theory,

well behaved with delta functions, they need to be treated as finite

quantities in practice due to the limitations of floating-point num-

bers. When the path tracer samples delta components, continuous

densities need to be set to 0 and optimization of our coupling func-

tions disabled (by setting their loss to 0), effectively only optimizing

for selection probabilities.

Discussion. Our approach to sampling the full product of the

rendering equation L(x,ωj)fs(x,ωo,ωj)| cosγj | has three distinct

advantages. First, it is agnostic to the number of dimensions that

the 2D domain is conditioned on. This allows for high-dimensional

conditionals without sophisticated data structures. One can simply

input extra information into the neural networks and let them learn

which dimensions are useful in which situations. While we only

pass in the surface normal, the networks could be supplied with

additional information—e.g. textured BSDF parameters—to further

improve the performance in cases where the product correlates with

such information. In that sense, our approach is more automatic

than previous works.

The second advantage is that our method does not require any

precomputation, such as fitting of (scene-dependent) materials into

a mixture of Gaussians [Herholz et al. 2018, 2016]. While a user still

needs to specify the hyperparameters as is also required by most

other approaches, we found our configuration of hyperparameters

to work well across all tested scenes. Note, however, that the lack

of explicit factorization in our approach can be detrimental in situ-

ations where the individual factors are simpler to learn than their

product, and the product can be easily importance sampled.

Lastly, our approach offers trivial persistence across renders. A

set of networks trained on one camera view can be reused from a

different view or within a slightly modified scene; see Section 6.4.

Unlike previous approaches, where the learned data structure re-

quires explicit support of adaptation to new scenes, neural networks

can be adapted by the same optimization procedure that was used

in initial training. Applying our approach to animations could thus

yield sub-linear training cost by amortizing it over multiple frames.

6.3 Experimental Setup

We implemented our technique in Tensorflow [Abadi et al. 2015] and

integrated it with the Mitsuba renderer [Jakob 2010]. Before we start

rendering, we initialize the trainable parameters of our networks us-

ing Xavier initialization [Glorot and Bengio 2010]. While rendering

the image, we optimize them using Adam [Kingma and Ba 2014].

Our rendering procedure is implemented as a hybrid CPU/GPU

algorithm, tracing rays in large batches on the CPU while two GPUs

perform all neural-network-related tasks. One GPU is responsible

for optimizing the MIS selection probabilities and evaluating and

sampling from q, while the other trains the networks using Monte

Carlo estimates from completed paths. Both GPUs use minibatch

sizes of 100 000 samples. Communication between the CPU and

GPUs happens via asynchronous buffers to aid parallelization. Com-

putation of selection probabilities and q-evaluation and q-sampling

communicate via asynchronous queues that are processed as fast

as possible. Our training buffer is configured to always contain

the latest 2 000 000 samples of which minibatches are randomly se-

lected for optimization. This procedure decorrelates samples that

are nearby in the image plane.

In order to obtain the final image with N samples, we perform

M = ⌊log
2
(N + 1)⌋ iterations with power-of-two sample counts

2
i
; i ∈ {0, . . . ,M}. This approach was initially proposed by Müller

et al. [2017] to limit the impact of initial high-variance estimates on

the final image. In contrast to their work, we do not reset the learned

distributions at every power-of-two iteration and keep training the

same set of networks from start to finish. Furthermore, instead of

discarding the pixel estimates of earlier iterations, we weight the

images produced within each iteration by their reciprocal mean

pixel variance, which we estimate on-the-fly. While this approach

introduces bias, it is imperceptibly small in practice due to averaging

across all pixels. Furthermore, the bias vanishes as the quality of

the variance estimate increases, making this approach consistent.

We apply the same weighting scheme to our implementation of the

method by Müller et al. [2017] to ensure a fair comparison.

All results were produced on a workstation with two Intel Xeon

E5-2680v3 CPUs (24 cores; 48 threads) and two NVIDIA Titan Xp

GPUs. Due to the combined usage of both the CPU and the GPU,

runtimes of different techniques depend strongly on the particular

setup. We therefore focus on comparing the performance using

equal-sample-count metrics that are independent of hardware. Abso-

lute timings and an equal-time comparison of a subset of the scenes

and methods are provided for completeness.

We quantify the error using the mean absolute percentage error
(MAPE), which is defined as

1

N
∑N
i=1 |vi − v̂i |/(v̂i + ϵ), where v̂i is

the value of the i-th pixel in the ground-truth image, vi is the value
of the i-th rendered pixel, and ϵ = 0.01 serves the dual objective

of avoiding the singularity at v̂i = 0 and down-weighting close-

to-black pixels. We use a relative metric to avoid putting overly

much emphasis on bright image regions. We also evaluated L1, L2,

mean relative squared error (MRSE) [Rousselle et al. 2011], symmetric
MAPE (SMAPE), and SSIM, which all can be inspected as false-color

maps and aggregates in the supplemented image viewer.

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:11

Affine, L = 16 Ours, piecewise-quadratic, L = 4

PT-Unidir PSSPS—4D NPS—4D NPS—2D NPS—4D NPS—6D Reference

B
a
t
h
r
o
o
m

MAPE: 0.1467 0.1426 0.1529 0.1474 0.1450 0.1460

S
p
a
c
e
s
h
i
p

MAPE: 0.0422 0.0331 0.0343 0.0259 0.0259 0.0261

C
o
p
p
e
r
H
a
i
r
b
a
l
l

MAPE: 0.4685 0.3139 0.2400 0.2236 0.1987 0.1956

C
o
u
n
t
r
y
K
i
t
c
h
e
n

MAPE: 0.6879 0.6476 0.6607 0.6598 0.6033 0.5633

B
o
o
k
s
h
e
l
f

MAPE: 0.7955 0.7553 0.6712 0.6915 0.6702 0.6810

N
e
c
k
l
a
c
e

MAPE: 0.3436 0.3334 0.3349 0.2210 0.2594 0.2680

Fig. 7. Neural path sampling in primary sample space. We compare a standard uni-directional path tracer (PT-Unidir), the method by Guo et al. [2018] (PSSPS),

neural path sampling using L = 16 multiply-add coupling layers [Dinh et al. 2016], and L = 4 of our proposed piecewise-quadratic coupling layers, both

optimized using the KL divergence. We experimented with sampling the 1, 2, or 3 first non-specular bounces (NPS–2D, NPS–4D and NPS–6D). Overall, our

technique performs best in terms of mean absolute percentage error (MAPE) in this experiment, but only offers improvement beyond the 4D case if paths stay

coherent, e.g. in the top crop of the Spaceship scene. More results and error visualizations can be found in the supplemented image viewer.

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

145:12 • Müller et al.

Ours, KL divergence Ours, χ 2
div.

PT-Unidir PPG GMM NPG-Radiance NPG-Product NPG-Product Reference

B
a
t
h
r
o
o
m

MAPE: 0.1467 0.1893 0.2718 0.1780 0.0542 0.0655

S
p
a
c
e
s
h
i
p

MAPE: 0.0422 0.0346 0.0640 0.0340 0.0202 0.0490

C
o
p
p
e
r
H
a
i
r
b
a
l
l

MAPE: 0.4685 0.1275 0.1561 0.1420 0.0855 0.1379

C
o
u
n
t
r
y
K
i
t
c
h
e
n

MAPE: 0.6879 0.1299 0.1505 0.1204 0.0953 0.2411

B
o
o
k
s
h
e
l
f

MAPE: 0.7955 0.1251 0.0982 0.1136 0.1196 0.1682

N
e
c
k
l
a
c
e

MAPE: 0.3436 0.1632 0.1612 0.1629 0.1273 0.3104

Fig. 8. Neural path guiding. We compare a uni-directional path tracer (PT-Unidir), the practical path-guiding (PPG) algorithm of Müller et al. [2017],

the Gaussian mixture model (GMM) of Vorba et al. [2014], and variants of our framework with L = 4 coupling layers sampling the incident radiance

alone (NPG-Radiance) or the whole integrand (NPG-Product), when optimizing either the KL and χ 2
divergences. Overall, sampling the whole integrand with

the KL divergence yields the most robust results. More results and error visualizations can be found in the supplemented image viewer.

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:13

Table 1. Mean average percentage error (MAPE) and render times of various importance-sampling approaches. At equal sampling rates—we report the number

of samples in each scene as mega samples (MS)—our technique performs on par or better than the practical path guiding (PPG) algorithm of Müller et al.

[2017] and the bidirectionally trained Gaussian mixture model (GMM) of Vorba et al. [2014] in all scenes but the Bookshelf, but incurs a large computational

overhead. Since the GMMs are trained in a pre-pass, we report both their training and rendering times. Please note, that the provided implementation of the

GMM training does not scale well beyond 8 threads. Furthermore, we do not report GMM results for the Glossy Kitchen and Veach Door scenes due to

crashes and bias, respectively. Our neural path sampling (NPS) likewise compares favorably against the method by Guo et al. [2018] (PSSPS). Using one-blob

encoding significantly improves the quality of our results; see Figure 9 for a histogram visualization of these metrics. We also evaluated SMAPE, L1, MRSE, L2,

and SSIM, which all can be inspected as false-color maps and aggregates in the supplemented image viewer.

Ours, KL divergence Ours, χ 2
div.

PT-Unidir PPG GMM PSSPS NPS NPG-Rad. NPG-Product NPG-Product

one-blob one-blob scalar one-blob one-blob

Bathroom 236 MS 0.147 88s 0.189 2.3m 0.272 9.1m+ 48s 0.143 89s 0.146 3.5m 0.178 9.3m 0.071 11m 0.054 12m 0.066 15m

Bedroom 236 MS 0.078 75s 0.053 1.8m 0.063 34m + 60s 0.068 77s 0.068 3.5m 0.045 6.4m 0.037 7.2m 0.032 7.7m 0.042 10m

Bookshelf 236 MS 0.796 74s 0.125 2.5m 0.098 16m + 66s 0.755 78s 0.681 3.5m 0.114 8.1m 0.250 10m 0.120 10m 0.168 12m

Copper Hairball 472 MS 0.468 2.0m 0.128 1.8m 0.156 11m +2.0m 0.314 2.0m 0.196 6.9m 0.142 4.9m 0.092 15m 0.086 16m 0.138 17m

Cornell Box 268 MS 0.185 23s 0.044 82s 0.049 6.2m+ 24s 0.130 26s 0.109 4.0m 0.035 6.6m 0.027 8.5m 0.021 10m 0.027 9.1m

Country Kitchen 236 MS 0.688 48s 0.130 81s 0.151 13m + 33s 0.648 49s 0.563 3.5m 0.120 5.4m 0.123 6.9m 0.095 7.8m 0.241 8.1m

Glossy Kitchen 236 MS 1.476 78s 0.308 87s — 1.452 77s 1.491 3.5m 0.243 5.6m 0.810 11m 0.136 11m 0.251 13m

Necklace 236 MS 0.344 29s 0.163 42s 0.161 3.2m+ 15s 0.333 31s 0.268 3.5m 0.163 2.6m 0.249 10m 0.127 11m 0.310 10m

Salle de Bain 236 MS 0.185 51s 0.071 89s 0.080 11m + 37s 0.161 54s 0.158 3.5m 0.057 5.4m 0.052 5.7m 0.042 6.1m 0.062 7.9m

Spaceship 236 MS 0.042 27s 0.035 56s 0.064 4.4m+4.6m 0.033 28s 0.026 3.5m 0.034 2.8m 0.027 3.5m 0.020 3.9m 0.049 4.1m

Sponza Atrium 236 MS 1.709 84s 0.353 91s 0.115 11m + 53s 1.692 81s 1.616 3.5m 0.109 7.4m 0.213 9.0m 0.110 11m 0.247 11m

Staircase 236 MS 0.163 57s 0.057 81s 0.065 14m + 41s 0.138 58s 0.130 3.5m 0.044 5.5m 0.038 5.7m 0.033 6.3m 0.043 7.7m

Swimming Pool 236 MS 0.688 40s 0.082 63s 0.077 29m + 22s 0.494 41s 0.198 3.5m 0.077 3.0m 0.073 4.5m 0.066 5.1m 0.087 5.1m

Veach Door 236 MS 0.910 38s 0.227 70s — 0.903 41s 0.716 3.5m 0.135 9.0m 0.135 12m 0.099 13m 0.137 12m

White Room 236 MS 0.102 79s 0.066 1.9m 0.076 24m + 55s 0.090 79s 0.093 3.5m 0.058 7.0m 0.046 7.8m 0.040 8.3m 0.045 11m

Yet Another Box 1073 MS 1.228 1.9m 0.141 4.7m 0.079 6.0m+1.7m 1.200 2.1m 1.108 15m 0.059 23m 0.222 30m 0.065 36m 0.110 33m

Bathroom
Bedroom

Bookshelf

Copper Hairball

Cornell Box

Country Kitchen

Glossy Kitchen
Necklace

Salle de Bain
Spaceship

Sponza Atrium
Staircase

Swimming Pool

Veach Door

White Room

Yet Another Box
0.00

0.25

0.50

0.75

1.00

1.25

Fig. 9. MAPE achieved by the bidirectionally trained Gaussian mixture model by Vorba et al. [2014] (the Glossy Kitchen and Veach Door are omitted because

of limitations of their implementation), the primary-sample-space method by Guo et al. [2018], and our neural importance-sampling approaches on different

scenes (the order and colors of bars follows Table 1). The bars are normalized with respect to practical path guiding [Müller et al. 2017]; a height below

1 signifies better performance. Some bars exceed outside of the displayed range; Table 1 provides the actual numbers. Primary-sample-space techniques

generally perform worse than path-guiding approaches. The product-driven neural path guiding usually performs the best.

6.4 Results

In order to best illustrate the benefits of different neural-importance-

sampling approaches, we compare their performance when used on

top of a unidirectional path tracer that uses BSDF sampling only.

While none of the algorithms utilized next-event estimation (includ-

ing prior works) to emphasize the performance of individual path

sampling/guiding approaches, we recommend using it in practice

for best performance. In the following, all results with our piecewise-

polynomial coupling functions utilize L = 4 coupling layers. We

use 1023 samples per pixel (spp) on all scenes except for the Cop-

per Hairball (2047 spp) and Yet Another Box (4095 spp). The

images were rendered at resolutions 640 × 360 and 512 × 512. It is

worth noting that since the quality of learned distribution depends

primarily on the total number of drawn samples (reported as “mega

samples” (MS)) rendering at higher resolutions yields high-quality

distributions “faster”, i.e. with fewer spp.

Path Sampling. In Figure 7, we study primary-sample-space path
sampling (PSSPS) using our implementation of the technique by

Guo et al. [2018] and our neural path sampling (NPS) with piecewise-
polynomial and affine coupling transforms. We apply the sampling

to only a limited number of non-specular interactions in the begin-

ning of each path and sample all other interactions using uniform

random numbers. We experimented with three different prefix di-

mensionalities: 2D, 4D, and 6D, which correspond to importance

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

145:14 • Müller et al.

1 512 1K

.1

1

M
A

P
E

Bathroom

1 512 1K

Bedroom

1 512 1K

Bookshelf

1 1K 2K

Copper Hairball

1 512 1K

Cornell Box

1 512 1K

Country Kitchen

1 512 1K

Glossy Kitchen

1 512 1K

Necklace

1 512 1K

spp

.1

1

M
A

P
E

Salle de Bain

1 512 1K

spp

Spaceship

1 512 1K

spp

Sponza Atrium

1 512 1K

spp

Staircase

1 512 1K

spp

Swimming Pool

1 512 1K

spp

Veach Door

1 512 1K

spp

White Room

1 2K 4K

spp

Yet Another Box

PT-Unidir (baseline) GMM [Vorba et al. 2014] PPG [Müller et al. 2017] NPG-Radiance NPG-Product

Fig. 10. Convergence plots of unidirectional path tracing (PT-Unidir), practical path guiding (PPG) [Müller et al. 2017], the algorithm of Vorba et al. [2014]

(GMM), and our radiance- and product-based neural path guiding (NPG-Radiance and NPG-Product, respectively). We plot MAPE as a function of samples

per pixel (spp) on a logarithmic scale. All guiding methods perform slightly worse than naïve path tracing initially, but overtake it rapidly on most scenes as

they learn to importance sample. PPG tends to learn slightly faster than our NPG, but falls behind due to learning a worse distribution. The algorithm of

Vorba et al. [2014] starts producing images only half-way through the sample budget as the first half of samples is used for offline pretraining.

sampling path prefixes of 1, 2, and 3 non-specular vertices, respec-

tively. As shown in the figure, going beyond 4D brings typically

little improvement in tested scenes, except for the highlights in

the Spaceship, where even longer paths are correlated thanks to

highly-glossy interactions with the glass of the cockpit
4
. This con-

firms the observation of Guo et al. [2018] that cases where more

than two bounces are needed to connect to the light source offer

minor to no improvement. We speculate that the poor performance

in higher dimensions is due to the relatively weak correlation be-

tween path geometries and PSS coordinates, i.e. paths with similar

PSS coordinates may have drastically different vertex positions. The

correlation tends to weaken at each additional bounce (e.g. in the dif-

fuse Cornell Box) unless the underlying path importance-sampling

technique preserves path coherence.

Path Guiding. In Figure 8, we analyze the performance of different

path-guiding approaches, referring to ours as neural path guiding
(NPG). We compare our work to the respective authors’ implemen-

tations of practical path guiding (PPG) by Müller et al. [2017] and

the bidirectionally trained Gaussian mixture model (GMM) by Vorba

et al. [2014], which are both learning sampling distributions that

are, in contrast to ours, proportional to incident radiance only. We

extended the GMM implementation to (oriented) spherical domains.

To isolate the benefits of using NICE with piecewise-quadratic

coupling layers, we created a variant of our approach, NPG-Radiance,

that learns PDFs proportional to incident radiance only and without

the MIS-aware optimization. The radiance-driven neural path guid-

ing outperforms PPG and GMM in 13 out of 16 scenes and follows

closely in the others (Bookshelf, Copper Hairball, Necklace),

making it the most robust method out of the three radiance-only

approaches.

4
Due to faster training of lower-dimensional distributions, the 2D case still has the

least overall noise in the Spaceship scene.

The performance of our neural approach is further increased by

learning and sampling proportional to the full product and incor-

porating MIS into the optimization—this technique yields the best

results in nearly all scenes. As seen on the Copper Hairball, our

technique can learn the product even under high-frequency spatial

variation by passing the surface normal as an additional input to

the networks. We trained all techniques with the same number of

samples as used for rendering. The SD-tree of PPG and our neu-

ral networks used between 5MB and 10MB, the Gaussian mixture

model used between 5MB and 118MB.

Table 1 reports the MAPE metric and absolute timings of 9 meth-

ods on a set of 16 tested scenes. We also visualize the results of all

methods using bar charts in Figure 9; the height is normalized with

respect to PPG. We exclude GMM results for the Glossy Kitchen

and Veach Door as we could not obtain representative results on

these scenes. Path sampling in PSS typically yields significantly

worse results than all path-guiding approaches. Neural path guid-

ing always benefits (sometimes significantly) from encoding the

inputs with one-blob encoding as opposed to inputing raw (scalar)

values. This version performs the best except for two scenes where

radiance-only NPG scored better.

Empirical Convergence Analysis. Convergence plots in Figure 10

provide further insight into the differences between unidirectional

path tracing, the GMMs by Vorba et al. [2014], PPG by Müller et al.

[2017], and our radiance- and product-based neural-path-guiding al-

gorithms. In most cases, the online path-guiding algorithms quickly

learn a superior sampling density compared to the baseline path

tracer. The GMM algorithm—being trained offline—is inferior in the

beginning of rendering, but produces competitive results after the

total sample budget is exhausted. Our neural approaches produce

the best results most of the time, with our product-based approach

usually being superior to our radiance-based approach.

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:15

Cornell Box Country Kitchen Swimming Pool

MAPE: 3.17 2.89 0.32 1.42 1.36 1.95 1.53 2.15 0.89

MAPE: 4.68 5.00 1.30 2.87 0.81 0.72 1.32 1.03 0.69

GMM PPG NPG-Rad. Reference GMM PPG NPG-Rad. Reference GMM PPG NPG-Rad. Reference

Fig. 11. Directional radiance distributions. From left to right: we visualize the distributions learned by a Gaussian mixture model (GMM) [Vorba et al. 2014],

an SD-tree (PPG) [Müller et al. 2017], our neural path-guiding approach trained on radiance (NPG-Rad.), and a spatial binary tree with a directional regular

128 × 128 grid (Reference). The first three approaches were trained with an equal sample count and require roughly equal amounts of memory in the

above scenes (around 10 MB). We used 2
16

samples per pixel to generate the reference distributions, which require roughly 5GB per scene. Despite its large

computational cost, the reference solution is still slightly blurred (see e.g. Cornell Box, red inset). Our approach produces the most accurate distributions in

the majority of cases, measured here using the mean average percentage error (MAPE). Unlike the competing techniques, however, we learn a continuous

function in both the spatial and the directional domain, allowing for a smaller amount of blur in some cases, e.g. in the Cornell Box.

Optimizing KL vs. χ2 Divergence. We compare variants of product-

driven neural path guiding optimized using the Kullback-Leibler

(KL) and χ2 divergences during training. The squared Monte Carlo

weight in the χ2 gradient causes a large variance, making it dif-

ficult to optimize with. We remedy this problem by clipping the

minibatch gradient norm to a maximum of 50. While the χ2 di-

vergence in theory minimizes the estimator variance most directly

(see Section 5.2), it performs worse in practice according to all tested

metrics on all test scenes (see Table 1 and the supplemented image

viewer). A notable aspect of optimizing the χ2 divergence is that
it tends to produce results with higher variance overall, but fewer

and less-extreme outliers.

Accuracy of Learned Distributions. We visualize learned radiance

distributions in Figure 11, comparing our path-guiding neural distri-

butions against the SD-tree, the GMM, and a reference solution. In

most cases, NPG learns more accurate directional distributions than

the competing methods in terms of the MAPE metric. Additionally,

NPG produces a spatially and directionally continuous function; we

illustrate the spatial continuity in the supplementary video.

Learned Selection Probabilities andMIS-Aware Optimization. In Fig-
ure 12, we demonstrate the increased robustness of neural path

guiding offered by learning optimal selection probabilities. The im-

pact is particularly noticeable on the cockpit of the spaceship seen

through specular interactions, which are handled nearly optimally

by sampling the material BSDF. In this region, a standard path

tracer outperforms the learned sampling PDFs. With MIS-aware

optimization—including the learning of selection probabilities—the

Fixed selection probabilities Learned selection probabilities

Fig. 12. Learning MIS selection probabilities—even with product-driven

path guiding—leads to significantly better results on the Spaceship cockpit,

where BSDF sampling is near optimal.

system downweighs the contribution of the learned PDF on the cock-

pit, but increases it in regions where it is more accurate, resulting

in significantly improved results overall.

Weight Reuse Across Camera Views. Figure 13 demonstrates the

benefits of reusing network weights, optimized for a particular cam-

era view, in a novel view of the scene. We took network weights that

resulted from generating images for Figure 8 as the initial weights
for rendering images in the right column of Figure 13. Similarly to

training from scratch, we keep optimizing the networks. If the initial

distributions are already a good fit, our weighting by the recipro-

cal mean pixel variance automatically keeps initial pixel estimates

rather than discarding them.

High-Frequency Material Parameters. In Figure 14, we show the

benefits of passing spatially high-frequency material parameters

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

145:16 • Müller et al.

From scratch Reused

S
p
a
c
e
s
h
i
p

S
w
i
m
m
i
n
g
P
o
o
l

C
o
u
n
t
r
y
K
i
t
c
h
e
n

Fig. 13. Learned distributions can be reused for novel camera views. The

right column shows results where the network weights were initialized with

weights learned for camera views in Figure 8.

w/o features w/ features

C
o
p
p
e
r
H
a
i
r
b
a
l
l

MAPE: 0.0994 0.0795

A
l
u
m
i
n
u
m
S
p
h
e
r
e

MAPE: 0.0735 0.0722
Fig. 14. Product-driven neural path guiding by itself has difficulties captur-

ing high-frequency material properties (left). Passing material properties as

additional input features enables the neural networks to learn parts of the

appearance in the potentially lower-frequency material-parameter space

(right), leading to a slightly better fit and thereby slightly reduced noise.

(e.g. the surface normal and roughness) as additional network inputs.

When material parameters are not passed, the network must learn

the product distribution purely as a function of spatio-directional

coordinates, which is difficult. However, when the network re-

ceives material parameters as input, it can learn a potentially lower-

frequency appearance model that exists partially in the material

parameters’ space, similar to the explicit factorization present in

other product-guiding methods [Herholz et al. 2018, 2016]. In con-

trast to our method, Herholz et al.’s techniques explicitly factorize

incident radiance and the BSDF which avoids this problem entirely,

potentially achieving better fits than shown in the figure.

Equal-Time Comparison. Lastly, we analyze the computational

overhead of neural importance sampling in an equal-time compar-

ison of unidirectional path tracing, PPG, and our product-driven

NPG; see Figure 15. All techniques utilize a CPU for tracing paths. In

addition, PPG uses the CPU for building and sampling the SD-tree,

while our NPG also leverages two GPUs.

The radiance-driven PPG often performs best due to its small com-

putational overhead, except when light transport is simple and/or

the radiance-driven distribution is a poor fit to the product (e.g.

the scenes in the top row). Despite utilizing two extra GPUs, the

product-driven NPG is comparatively slow, on average constructing

only about a quarter of the number of samples that PPG constructs.

However, since these samples are of “higher quality”, the technique

manages to close most of the performance gap to PPG and unidirec-

tional path tracing, in some cases producing the best results.

7 DISCUSSION AND FUTURE WORK

Runtime Cost. An important property of practical sampling strate-

gies is a low computational cost of generating samples and evaluat-

ing their PDF, relative to the cost of evaluating the integrand. In our

path-guiding applications, the cost is dominated by the evaluation

of coupling layers: roughly 10% of the time is spent on one-blob

encoding, 60% on fully connected layers, and 30% on the piecewise-

polynomial warp. This makes the overhead of our implementation

prohibitive in simple scenes. While we focused on the theoretical

challenge of applying neural networks to the problem of impor-

tance sampling in this work, accelerating the computation to make

our approach more practical is an important and interesting future

work. We believe specialized hardware (e.g. NVIDIA’s TensorCores)

and additional computation graph optimization (e.g. NVIDIA’s Ten-

sorRT) are promising next steps, which alone might be enough to

bring our approach into the realm of practicality.

Optimizing for Multiple Integrals. In Section 5.1, we briefly dis-

cussed that the ground-truth density may be available only in un-

normalized form. We argued that this is not a problem since the

ignored factor F scales all gradients uniformly; it thus does not im-

pact the optimization. These arguments pertain to handling a single
integration problem. In Section 6, we demonstrated applications

to path sampling and path guiding, where the learned density is

conditioned on additional dimensions and we are thus solving many

different integrals at once. Since the normalizing F varies between

them, our arguments do not extend to this particular problem. Be-

cause neglecting the normalization factors is potentially negatively

influencing the optimization, we experimented with tabulating F ,
but we did not experience noticeable improvements. This currently

stands as a limitation of applying our work to path guiding/sampling

and it would be worth addressing in future work.

Convergence of Optimization. Although our optimization based

on stochastic gradients has many advantages, it also brings certain

disadvantages. Techniques based on stochastic gradient descent do

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:17

PT-Unidir PPG NPG-Product

B
a
t
h
r
o
o
m

12 minutes MAPE: 0.0512 0.1018 0.0542

Mega samples: 2164 860 236

S
a
l
l
e
d
e
B
a
i
n

6.1 minutes MAPE: 0.0672 0.0436 0.0421
Mega samples: 1875 661 236

B
o
o
k
s
h
e
l
f

10 minutes MAPE: 0.3765 0.0677 0.1196

Mega samples: 2157 664 236

PT-Unidir PPG NPG-Product

W
h
i
t
e
R
o
o
m

8.3 minutes MAPE: 0.0396 0.0396 0.0400

Mega samples: 1604 668 236

V
e
a
c
h
D
o
o
r

13 minutes MAPE: 0.2317 0.0857 0.0995

Mega samples: 5413 1540 236

G
l
o
s
s
y
K
i
t
c
h
e
n

11 minutes MAPE: 1.3179 0.1343 0.1363

Mega samples: 2222 1081 236

Fig. 15. Equal-time comparison of unidirectional path tracing (PT-Unidir), practical path guiding (PPG) [Müller et al. 2017], and our product-driven neural

path guiding (NPG-Product). Despite the large computation cost of NPG, it performs competitively with PPG and outperforms unidirectional path tracing in

scenes with difficult light transport (bottom two rows, sorted by difficulty in ascending order). The radiance-driven PPG algorithm tends to perform best

because of its low computational cost, except when incident radiance is a poor approximation of the product (top row).

not converge to local optima, but oscillate around them. This can be

observed in the 2D examples in our supplementary video and also

happens during neural path guiding. The problem is well known in

machine learning literature and is usually addressed by decaying the

learning rate over time. We opted not to decay our learning rate for

simplicity, because finding an optimal decay schedule is a difficult

problem. Solving this issue in the future would likely improve our

results further, perhaps significantly.

Scene Scale. We studied the performance of neural path guiding

when all positions that are input to it are relatively close compared to

the scene bounding box. We artificially scaled the positional inputs

by 10
−5

in the Country Kitchen scene, observing a roughly 2×

larger error. While the method still outperforms path tracing by a

big margin, alleviating this limitation is important future work.

Alternative Variance Reduction Techniques. In this paper, we stud-

ied the application of neural networks to importance sampling.

Other variance-reduction techniques, such as control variates, could

enjoy analogous benefits. We believe similar derivations to Section 5

can be made, leading to an interconnected gradient-descent-based

optimization of multiple variance reduction techniques.

Alternative Training Schemes. Keller and Dahm [2019] learn near-

optimal light selection probabilities for next event estimation by

minimizing an approximation (via Q-learning) of the total-variation

divergence. This optimization strategy and variations thereof are an

interesting alternative to our KL and χ2 divergence loss functions.
Another attractive goal is a unified optimization across multiple

different scenes, rather than training from scratch for each one. A

potentially fruitful extension of our approach would be to apply

a higher-level optimization strategy in the spirit of “learning to

learn” [Andrychowicz et al. 2016; Chen et al. 2017].

Failure Cases. In the pathologically difficult Yet Another Box

scene, the theoretically inferior radiance-basedNPGproduces slightly

better results than product-basedNPG.We suspect that this is caused

by the product distribution being much more complicated and there-

fore more difficult to learn than the radiance distribution. Further-

more, in the Bookshelf scene, our approaches perform worse than

the GMM algorithm by Vorba et al. [2014]. Although our method

exhibits fewer of such failure cases than PPG and the GMMs, an in-

vestigation into their causes is still to be carried out and could offer

interesting insights; per-scene results with discussions of rendering

challenges are provided in the supplementary material.

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

145:18 • Müller et al.

8 CONCLUSION

We introduced a technique for importance sampling with neural

networks. Our approach builds partly on prior works and partly on

three novel extensions: we proposed piecewise-polynomial coupling

transforms that increase the modeling power of coupling layers,

we introduced the one-blob encoding that helps the network to

specialize its parts to different input configurations, and, finally,

we derived an optimization strategy that aims at reducing the vari-

ance of Monte Carlo estimators that employ trainable probabilistic

models. We demonstrated the benefits of our online-learning ap-

proach in a number of settings, ranging from canonical examples

to production-oriented ones: learning the distribution of natural

images and path sampling and path guiding for simulation of light

transport. In the vast majority of cases, our technique performed

favorably in equal sample count comparisons against prior art.

This paper brings together techniques from machine learning,

developed initially for density estimation, and applications to Monte

Carlo integration, with examples from the field of rendering. We

hope that our work will stimulate further applications of deep neural

networks to importance sampling and integration problems.

9 ACKNOWLEDGMENTS

We thank Thijs Vogels for bringing RealNVP to our attention and

Sebastian Herholz, Yining Karl Li, and Jacob Munkberg for valu-

able feedback. We are grateful to Vorba et al. [2014] and Dinh et al.

[2016] for releasing the source code of their work. We also thank the

following people for providing scenes and models that appear in our

figures: Benedikt Bitterli [2016], Ondřej Karlík (Swimming Pool), Jo-

hannes Hanika (Necklace), Samuli Laine and Olesya Jakob (Copper

Hairball), Jay-Artist (Country Kitchen, White Room), Marios

Papas and Maurizio Nitti, Marko Dabrović (Sponza Atrium), Miika

Aittala, Samuli Laine, and Jaakko Lehtinen (Veach Door), Nacimus

(Salle de Bain), SlykDrako (Bedroom), thecali (Spaceship), Tiziano

Portenier (Bathroom, Bookshelf), and Wig42 (Staircase). Pro-

duction baby: Vít Novák.

A DETERMINANT OF COUPLING LAYERS

Here we include the derivation of the Jacobian determinant akin

to Dinh et al. [2016]. The Jacobian of a single coupling layer, where

A = [[1,d]] and B = [[d + 1,D]], is a block matrix:

∂y

∂xT
=

[
Id 0

∂C(xB ;m(xA))
∂(xA)T

∂C(xB ;m(xA))
∂(xB)T

]
, (31)

where Id is a d ×d identity matrix. The determinant of the Jacobian

matrix reduces to the determinant of the lower right block. Note

that the Jacobian

∂C(xB ;m(xA))
∂(xA)T

(lower left block) does not appear

in the determinant, hencem can be arbitrarily complex.

For the multiply-add coupling transform [Dinh et al. 2016] we get

∂C
(
xB ;m(xA)

)
∂(xB)

T =


es1 0

. . .

0 esD−d

 . (32)

The diagonal nature stems from the separability of the coupling

transform. The determinant of the coupling layer in the forward and

the inverse pass therefore reduce to e
∑
si
and e−

∑
si
, respectively.

In our piecewise-polynomial coupling transforms, we maintain

separability to preserve the diagonal Jacobian, i.e.

C
(
xB ;m(xA)

)
=

(
C1

(
xB
1
;m(xA)

)
, · · · , CD−d

(
xBD−d ;m(xA)

))T
,

and therefore, using

∂Ci
(
xBi ;m(xA)

)
∂xBi

= qi (x
B
i), we get

∂C
(
xB ;m(xA)

)
∂(xB)

T =


q1(x

B
1
) 0

. . .

0 qD−d (x
B
D−d)

 . (33)

The determinant thus is the product of the marginal PDFs defining

the piecewise-polynomial warp along each dimension

∏D−d
i=1 qi (x

B
i).

B ADAPTIVE BIN SIZES IN PIECEWISE-LINEAR

COUPLING FUNCTIONS

Without loss of generality, we investigate the simplified scenario of

a one-dimensional input A = ∅ and B = {1}, a single coupling layer

L = 1 and the KL-divergence loss function. Further, let the coupling

layer admit a piecewise-linear coupling transform—i.e. it predicts a

piecewise-constant PDF—with K = 2 bins. Let the widthW of the 2

bins be controlled by traininable parameter θ ∈ R such thatW1 = θ
andW2 = 1 − θ and S = Q1θ +Q2(1 − θ), then

q(x ;θ) =

{
Q1/S if x < θ

Q2/S otherwise.

(34)

Using Equation (22) , the gradient of the KL divergence w.r.t. θ is

∇θDKL(p ∥ q;θ) = ∇θ

∫
1

0

{
p(x) log(Q1/S) if x < θ

p(x) log(Q2/S) otherwise

dx , (35)

where—in contrast to our piecewise-quadratic coupling function—

the gradient can not be moved into the integral (see Equation (23))

due to the discontinuity of q at θ . This prevents us from expressing

the stochastic gradient of Monte Carlo samples with respect to θ in

closed form and therefore optimizing with it.

We further investigate ignoring this limitation and performing

the simplification of Equation (23) regardlessly, resulting in

∇θDKL(p ∥ q;θ) ≈ E



p(X)

(
1 −

Q2

Q1

)
if X < θ

p(X)

(
Q1

Q2

− 1

)
otherwise

 , (36)

which has the same sign regardless of the value of θ , resulting in di-

vergent behavior. A similarly undesirable (albeit different) behavior

emerges when normalizing q in a slightly different way by inter-

preting Q as probability masses rather than unnormalized densities:

q(x ;θ) =

{
Q1/θ if x < θ

Q2/(1 − θ) otherwise.

(37)

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

Neural Importance Sampling • 145:19

The KL divergence gradient is then

∇θDKL(p ∥ q;θ) ≈

∫
1

0

{
p(x)/θ if x < θ

p(x)/(θ − 1) otherwise,

dx

=
1

θ

∫ θ

0

p(x) dx −
1

1 − θ

∫
1

θ
p(x) dx . (38)

To illustrate the flawed nature of this gradient, consider the simple

scenario of p(x) = 1, in which the RHS always equals to zero, sug-

gesting any θ being a local minimum. However, θ clearly influences

DKL(p ∥ q;θ) in this example, and therefore can not be optimal ev-

erywhere. Empirical investigations with other shapes of p, e.g. the
examples from Figure 4, also suffer from a broken optimization and

do not converge to a meaningful result.

While we only discuss a simplified setting here, the simplification

in Equation (23) is also invalid in the general case of piecewise-linear
coupling functions, likewise leading to a broken optimization.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, et al. 2015. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems. http://tensorflow.org/

Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, MatthewW. Hoffman,

David Pfau, Tom Schaul, and Nando de Freitas. 2016. Learning to learn by gradient

descent by gradient descent. arXiv:1606.04474 (June 2016).
Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018. Neural

Ordinary Differential Equations. arXiv:1806.07366 (June 2018).
Yutian Chen,MatthewW.Hoffman, Sergio Gómez Colmenarejo,MishaDenil, Timothy P.

Lillicrap, Matt Botvinick, and Nando de Freitas. 2017. Learning to Learn without

Gradient Descent by Gradient Descent. In Proceedings of the 34th International
Conference on Machine Learning (Proceedings of Machine Learning Research), Doina
Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention Centre,

Sydney, Australia, 748–756.

Ken Dahm and Alexander Keller. 2018. Learning Light Transport the ReinforcedWay. In

Monte Carlo and Quasi-Monte Carlo Methods. Proceedings in Mathematics & Statistics,
Art B. Owen and Peter W. Glynn (Eds.). Vol. 241. Springer, 181–195.

Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. NICE: Non-linear independent

components estimation. arXiv:1410.8516 (Oct. 2014).
Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density estimation using

Real NVP. arXiv:1605.08803 (March 2016).

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE:

Masked autoencoder for distribution estimation. In International Conference on
Machine Learning. 881–889.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep

feedforward neural networks. In Proc. 13th International Conference on Artificial
Intelligence and Statistics (May 13–15). JMLR.org, 249–256.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In

Advances in neural information processing systems. 2672–2680.
Jerry Jinfeng Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary

Sample Space Path Guiding. In Eurographics Symposium on Rendering - Experi-
mental Ideas & Implementations, Wenzel Jakob and Toshiya Hachisuka (Eds.). The

Eurographics Association.

Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed

Metropolis Light Transport. ACMTrans. Graph. 33, 4, Article 100 (July 2014), 10 pages.
https://doi.org/10.1145/2601097.2601138

David Money Harris and Sarah L. Harris. 2013. 3.4.2 - State Encodings. In Digital
Design and Computer Architecture (second ed.). Morgan Kaufmann, Boston, 129–131.

https://doi.org/10.1016/B978-0-12-394424-5.00002-1

Sebastian Herholz, Oskar Elek, Jens Schindel, Jaroslav Křivánek, and Hendrik P. A.

Lensch. 2018. A Unified Manifold Framework for Efficient BRDF Sampling based

on Parametric Mixture Models. In Eurographics Symposium on Rendering - Experi-
mental Ideas & Implementations, Wenzel Jakob and Toshiya Hachisuka (Eds.). The

Eurographics Association.

Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016.

Product Importance Sampling for Light Transport Path Guiding. Computer Graphics
Forum (2016). https://doi.org/10.1111/cgf.12950

Heinrich Hey and Werner Purgathofer. 2002. Importance Sampling with Hemispherical

Particle Footprints. In Proceedings of the 18th Spring Conference on Computer Graphics
(SCCG ’02). ACM, 107–114. https://doi.org/10.1145/584458.584476

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron C. Courville. 2018.

Neural Autoregressive Flows. arXiv:1804.00779 (April 2018).
Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Henrik Wann Jensen. 1995. Importance Driven Path Tracing using the Photon Map. In

Rendering Techniques. Springer Vienna, Vienna, 326–335. https://doi.org/10.1007/

978-3-7091-9430-0_31

James T. Kajiya. 1986. The Rendering Equation. Computer Graphics 20 (1986), 143–150.
Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A

Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm.

Computer Graphics Forum 21, 3 (May 2002), 531–540. https://doi.org/10.1111/1467-

8659.t01-1-00703

Alexander Keller and Ken Dahm. 2019. Integral Equations and Machine Learning.

Mathematics and Computers in Simulation 161 (2019), 2–12.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 (June 2014).
Diederik P. Kingma and Prafulla Dhariwal. 2018. Glow: Generative Flow with Invertible

1x1 Convolutions. arXiv:1807.03039 (July 2018).

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max

Welling. 2016. Improved variational inference with inverse autoregressive flow. In

Advances in Neural Information Processing Systems. 4743–4751.
Eric P. Lafortune and Yves D. Willems. 1995. A 5D tree to reduce the variance of Monte

Carlo ray tracing. In Rendering Techniques ’95 (Proc. of the 6th Eurographics Workshop
on Rendering). 11–20. https://doi.org/10.1007/978-3-7091-9430-0_2

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning Face

Attributes in the Wild. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV) (ICCV ’15). IEEE Computer Society, Washington, DC, USA,

3730–3738. https://doi.org/10.1109/ICCV.2015.425

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient

Light-Transport Simulation. Computer Graphics Forum 36, 4 (June 2017), 91–100.

https://doi.org/10.1111/cgf.13227

Jacopo Pantaleoni and Eric Heitz. 2017. Notes on optimal approximations for importance

sampling. arXiv:1707.08358 (July 2017).

George Papamakarios, Iain Murray, and Theo Pavlakou. 2017. Masked autoregressive

flow for density estimation. In Advances in Neural Information Processing Systems.
2338–2347.

Vincent Pegoraro, Carson Brownlee, Peter S. Shirley, and Steven G. Parker. 2008a. To-

wards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation.

In Proceedings of the 3rd IEEE Symposium on Interactive Ray Tracing. 107–114.
Vincent Pegoraro, Ingo Wald, and Steven G. Parker. 2008b. Sequential Monte Carlo

Adaptation in Low-Anisotropy Participating Media. Computer Graphics Forum 27, 4

(Sept. 2008), 1097–1104. https://doi.org/10.1111/j.1467-8659.2008.01247.x

Danilo Rezende and Shakir Mohamed. 2015. Variational Inference with Normalizing

Flows. In International Conference on Machine Learning. 1530–1538.
Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive sampling and

reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6 (Dec.

2011). https://doi.org/10.1145/2024156.2024193

Joshua Steinhurst and Anselmo Lastra. 2006. Global Importance Sampling of Glossy

Surfaces Using the Photon Map. IEEE Symposium on Interactive Ray Tracing (Sept.

2006), 133–138. https://doi.org/10.1109/RT.2006.280224

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 2016a.

Wavenet: A generative model for raw audio. arXiv:1609.03499 (Sept. 2016).
Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016b. Pixel Recurrent

Neural Networks. In International Conference on Machine Learning. 1747–1756.
Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D.

Dissertation. Stanford, CA, USA.

Eric Veach and Leonidas J. Guibas. 1994. Bidirectional estimators for light transport. In

EG Rendering Workshop.
Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques

for Monte Carlo Rendering. In Proc. SIGGRAPH. 419–428. https://doi.org/10.1145/

218380.218498

Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian online regression

for adaptive direct illumination sampling. ACM Trans. Graph. 37, 4 (Aug. 2018).
Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.

On-line Learning of Parametric Mixture Models for Light Transport Simulation.

ACM Trans. Graph. 33, 4 (Aug. 2014).
Quan Zheng and Matthias Zwicker. 2018. Learning to Importance Sample in Primary

Sample Space. arXiv:1808.07840 (Sept. 2018).

ACM Trans. Graph., Vol. 38, No. 5, Article 145. Publication date: July 2019.

http://tensorflow.org/
https://doi.org/10.1145/2601097.2601138
https://doi.org/10.1016/B978-0-12-394424-5.00002-1
https://doi.org/10.1111/cgf.12950
https://doi.org/10.1145/584458.584476
https://doi.org/10.1007/978-3-7091-9430-0_31
https://doi.org/10.1007/978-3-7091-9430-0_31
https://doi.org/10.1111/1467-8659.t01-1-00703
https://doi.org/10.1111/1467-8659.t01-1-00703
https://doi.org/10.1007/978-3-7091-9430-0_2
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1111/cgf.13227
https://doi.org/10.1111/j.1467-8659.2008.01247.x
https://doi.org/10.1145/2024156.2024193
https://doi.org/10.1109/RT.2006.280224
https://doi.org/10.1145/218380.218498
https://doi.org/10.1145/218380.218498

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Non-linear Independent Components Estimation
	3.1 Coupling Layers
	3.2 Affine Coupling Transforms
	3.3 Compounding Multiple Coupling Layers

	4 Piecewise-polynomial Coupling Layers
	4.1 Piecewise-Linear Coupling Transform
	4.2 Piecewise-Quadratic Coupling Transform
	4.3 One-Blob Encoding
	4.4 Analysis

	5 Monte Carlo Integration with NICE
	5.1 Minimizing Kullback-Leibler Divergence
	5.2 Minimizing Variance via 2 Divergence

	6 Neural Path Sampling and Path Guiding
	6.1 Primary-Sample-Space Path Sampling
	6.2 Path Guiding
	6.3 Experimental Setup
	6.4 Results

	7 Discussion and Future Work
	8 Conclusion
	9 Acknowledgments
	A Determinant of Coupling Layers
	B Adaptive Bin Sizes in Piecewise-Linear Coupling Functions
	References

