
Eurographics Symposium on Rendering 2017
P. Sander and M. Zwicker
(Guest Editors)

Volume 36 (2017), Number 4

Practical Path Guiding for Efficient Light-Transport Simulation

Thomas Müller1,2 Markus Gross1,2 Jan Novák2

1ETH Zürich
2Disney Research

Vorba et al. MSE: 0.017

Training: 5.1 min
Rendering: 4.2 min, 8932 spp

Reference Ours (equal time) MSE: 0.018

Training: 0.73 min
Rendering: 4.2 min, 11568 spp

Figure 1: Our method allows efficient guiding of path-tracing algorithms as demonstrated in the TORUS scene. We compare equal-time
(4.2 min) renderings of our method (right) to the current state-of-the-art [VKv∗14, VK16] (left). Our algorithm automatically estimates
how much training time is optimal, displays a rendering preview during training, and requires no parameter tuning. Despite being fully
unidirectional, our method achieves similar MSE values compared to Vorba et al.’s method, which trains bidirectionally.

Abstract
We present a robust, unbiased technique for intelligent light-path construction in path-tracing algorithms. Inspired by existing
path-guiding algorithms, our method learns an approximate representation of the scene’s spatio-directional radiance field in
an unbiased and iterative manner. To that end, we propose an adaptive spatio-directional hybrid data structure, referred to
as SD-tree, for storing and sampling incident radiance. The SD-tree consists of an upper part—a binary tree that partitions
the 3D spatial domain of the light field—and a lower part—a quadtree that partitions the 2D directional domain. We further
present a principled way to automatically budget training and rendering computations to minimize the variance of the final image.
Our method does not require tuning hyperparameters, although we allow limiting the memory footprint of the SD-tree. The
aforementioned properties, its ease of implementation, and its stable performance make our method compatible with production
environments. We demonstrate the merits of our method on scenes with difficult visibility, detailed geometry, and complex
specular-glossy light transport, achieving better performance than previous state-of-the-art algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—; I.3.3 [Computer Graphics]: Picture/Image Generation—

1. Introduction

One of the remaining challenges of realistic image synthesis is an
efficient exploration of the space of paths that light can take to
reach the sensor. The types of scenes that we nowadays encounter
in product visualization, architectural design, and movie production
often test the limits of simple algorithms, such as path tracing, lead-
ing to excessive render times. A large body of research has thus

been devoted to developing sophisticated methods for constructing
high-energy light paths [LW93, VG97] or offsetting the inefficiency
by reusing computation [Jen01, Kel97, GKDS12, HPJ12, KMA∗15].
While these algorithms perform well in certain scenarios, they tend
to under-perform in others. Furthermore, integrating them into heav-
ily constrained production environments may still present a sig-
nificant challenge for retaining efficiency, flexibility, and artistic
control.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

Our goal is to allow path-tracing algorithms to iteratively “learn”
how to construct high-energy light paths while keeping the algo-
rithm simple, yet robust and capable of simulating complex transport
phenomena, such as caustics. Our approach is inspired by existing
path-guiding algorithms that demonstrate that unidirectional path
construction can be nearly as efficient as more sophisticated algo-
rithms when properly guided by the adjoint quantity. Instead of
using spatially cached histograms [Jen95], cones [HP02], or gaus-
sian mixtures [VKv∗14], we store a discrete approximation of the
scene’s 5D light field using an adaptive spatio-directional tree (SD-
tree; see Figure 2). The SD-tree consists of an upper part—a binary
tree that partitions the 3D spatial domain of the light field–and a
lower part—a quadtree that partitions the 2D directional domain.

Our SD-trees adapt well to both low- and high-frequency light
fields without excessive memory requirements and compare favor-
ably to the previously used approaches for path guiding. They also
permit fast importance sampling and can be constructed quickly,
hence enabling trivial, fast adaptation to new information. Addi-
tionally, we present a refined iterative training scheme and provide
a principled way for finding the sweet spot between training and
rendering when a fixed time (or sample) budget is given. Lastly,
the ease of implementation, support of progressive rendering, and
the absence of tunable hyper-parameters—the only parameter is the
maximum memory footprint—make our approach well-suited for
production environments.

2. Problem Statement and Related Work

The amount of radiance Lo(x,~ωo) leaving point x in direction ~ωo is
quantified by the rendering equation [Kaj86]

Lo(x,~ωo) = Le(x,~ωo)+
∫

Ω

L(x,~ω) fs(x,~ωo,~ω)cosθd~ω , (1)

where Le(x,~ωo) is radiance emitted from x in~ωo, L(x,~ω) is radiance
incident at x from~ω, and fs is the bidirectional scattering distribution
function. The reflection integral Lr can be estimated numerically
using N samples with the following Monte Carlo (MC) estimator

〈Lr〉=
1
N

N

∑
j=1

L(x,~ω j) fs(x,~ωo,~ω j)cosθ j

p(~ω j|x,~ωo)
. (2)

The variance of the estimator V [〈Lr〉] is proportional to 1/N and
can be reduced by drawing ~ω j from a probability density function
(PDF) p(~ω j|x,~ωo) that resembles the shape of the numerator. In
fact, if the PDF differs from the numerator only by a scaling factor,
then V [〈Lr〉] = 0. While the BSDF and the cosine term can be ap-
proximated relatively well even in the general case, finding efficient
means to quantify and represent the incident radiance field, and
using it for importance sampling, has been a long-sought goal of
MC image synthesis.

Jensen [Jen95] and Lafortune and Willems [LW95] first intro-
duced the concept of guiding camera paths by leveraging informa-
tion of previously traced paths. Jensen [Jen95] populates the scene
with sampling points, each equipped with a hemispherical histogram
from an a-priori traced set of photons. The histograms are then used
to sample directions when building camera paths. Lafortune and
Willems [LW95] propose to rasterize incident radiance in a 5D tree
for later usage as a control variate and for importance sampling.

(a) Spatial binary tree (b) Directional quadtree

Figure 2: The spatio-directional subdivision scheme of our SD-tree.
Space is adaptively partitioned by a binary tree (a) that alternates
between splitting the x, y, and z dimension in half. Each leaf node of
the spatial binary tree contains a quadtree (b), which approximates
the spherical radiance field as an adaptively refined piecewise-
constant function.

Steinhurst and Lastra [SL06] refine Jensen’s method by introducing
product importance sampling with a discretized BSDF, and Budge
et al. [BAJ08] apply a specialized form of Jensen’s technique to
improve sampling of caustics. Hey and Purgathofer [HP02] recog-
nize that regular histograms are ill-suited for this type of density
estimation and instead propose to average cones of adaptive width
centered around the incident directions of photons. Recently, Vorba
et al. [VKv∗14] proposed to instead perform density estimation
via a parametric gaussian-mixture model and an iterative on-line
reinforcement learning algorithm. Follow-up works added approxi-
mate product importance sampling with the BSDF [HEV∗16], and
adjoint-based Russian roulette [VK16] to the method. Dahm and
Keller [DK17] combine rendering and training into the same algo-
rithm that requires a careful sample weighting to diminish in the
limit.

In our work, we adopt adjoint-based Russian roulette and pro-
gressive reinforcement learning, while also fusing the rendering and
learning algorithms into one. Furthermore, we split the learning pro-
cedure into distinct passes—each guided by the previous pass—in
such a way that each pass remains unbiased.

The main distinction of our approach, however, is the data struc-
ture used for representing the incident radiance field. We employ a
combination of a binary tree for adaptive spatial partitioning, and
a directional quadtree for adaptive binning in the angular domain.
Such hybrid data structures, e.g. volume-surface trees [BHGS06]
or rasterized BVHs [ND12], were successfully applied to geometry
processing and rendering. In particular, Gassenbauer et al. [GKB09]
used a spatial octree and a directional kd-tree to record individual
radiance samples for the similar problem of radiance caching. We
opt for a binary spatial tree due to its smaller branching factor that
is better suited for our progressive reinforcement learning described
in Section 3.4. We use a quadtree for the directional domain to
circumvent the downsides of regular binning [Jen95] and to facil-
itate a straightforward construction (see Section 3.3) and robust
performance, which is harder to achieve with kd-trees [GKB09] and
gaussian-mixture models [VKv∗14, HEV∗16], respectively.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

3. Path Guiding with SD-Trees

We use reinforcement learning to construct a discrete approxima-
tion of the incident radiance field, further denoted as L̂. The field
L̂ is represented by an SD-tree and iteratively improved with a ge-
ometrically increasing compute budget; we double the number of
samples across iterations. We always maintain two SD-trees: one
for guiding the construction of light paths and another for collecting
MC estimates of incident radiance. More precisely, in iteration k we
importance-sample incident radiance using the previously populated
L̂k−1 and splat estimates of L(x,~ω) into L̂k. When iteration k is
completed, we drop L̂k−1 and use the information in L̂k to prepare
an empty SD-tree, L̂k+1 for collecting estimates in the next iteration.

3.1. Collecting Estimates of L

When a complete path is formed, we iterate over all its vertices
and splat MC estimate of incident radiance into L̂k. For vertex v
with radiance estimate L(xv,~ωv), we first perform a spatial search
by descending through the binary tree to find the leaf node that
contains position xv. The leaf node stores a reference to a quadtree.
The two dimensions of the quadtree parameterize the full sphere of
directions; we use world-space cylindrical coordinates to preserve
area ratios when transforming between the primary and directional
domain. We continue the traversal in the directional domain by
descending through the quadtree. We enter only nodes that contain
~ωv and deposit the estimate L(xv,~ωv) in all nodes visited during the
descent.

When all radiance estimates in the current iteration were de-
posited, the nodes of the quadtrees estimate the total incident radi-
ance arriving through the spherical region corresponding to their
respective quad. Note that the directional distribution is averaged
over all spatial positions that were sampled within the binary-tree
leaf associated with the quadtree. In addition to guiding the path
construction in the next iteration, this information is also used to
adapt the structure of the SD-tree for collecting future estimates; we
describe the adaptation of the spatial and directional components of
the SD-tree in the next two sections.

3.2. Adaptive Spatial Binary Tree

The depth and structure of the binary tree determines how refined
and adaptive the approximation of the spatial component of the radi-
ance field is. To keep the refinement straightforward, we alternate
the x, y, and z axes and always split the node in the middle. The de-
cision whether to split is driven only by the number of path vertices
that were recorded in the volume of the node in the previous itera-
tion; we maintain a counter for each leaf node during path tracing.
Specifically, we split a node if there have been at least c ·

√
2k path

vertices, where 2k is proportional to the amount of traced paths in
the k-th iteration (Section 3.4) and c is derived from the resolution of
the quadtrees; we detail this in Section 5.3. Post subdivision, all leafs
contain roughly c ·

√
2k path vertices. Therefore, the total amount of

leaf nodes is proportional to 2k

c·
√

2k
=
√

2k

c . Effectively, our threshold
ensures that the total number of leaf nodes and the amount of sam-
ples in each leaf both grow at the same rate

√
2k across iterations.

The constant c trades off convergence of the directional quadtrees
with spatial resolution of the binary tree.

While refining the tree based only on the number of samples may
seem rudimentary, it performs remarkably well since the iteratively
learned distributions guide paths into regions with high contribu-
tions to the image; these thus get refined more aggressively than
low-contribution regions. Having a coarser radiance-function ap-
proximation in regions that receive fewer paths is tolerable, because
increase in relative noise is generally counteracted by the smaller
contribution of such paths.

3.3. Adaptive Directional Quadtree

In addition to splitting the binary tree, we also rebuild all of the
quadtrees after each iteration to better reflect the learned directional
distribution of radiance; these new quadtrees will be used for col-
lecting the estimates in the next iteration. The structure of each new
quadtree is driven by the directional distribution of flux collected
in the last iteration. To this end, we first copy either the leaf’s old
quadtree, or the quadtree of its parent if the leaf node is new.

Our goal is to adapt the subdivision of the copied quadtree so
that each leaf contains no more than 1% of flux collected in the old
quadtree. We descend through the copied quadtree and subdivide its
nodes only if the fraction of collected flux flowing through the node
is larger than ρ = 0.01; i.e. if Φn/Φ > ρ, where Φ is the total flux
flowing through the quadtree, and Φn is the flux flowing through the
node in question. When subdividing a node, we assign a quarter of
its flux to the newly created children and we recursively apply our
subdivision criterion. At the same time, we evaluate the subdivision
criterion at every existing interior node, and we prune its children if
the criterion is not met. Spherical regions with high incident flux are
thus represented with higher resolution. The proposed subdivision
scheme yields a roughly equi-energy partitioning of the directional
domain.

Rebuilding the quadtrees after each iteration ensures that the data
structure adapts to the newly gained information about the radiance
field, and that memory is used efficiently. The threshold ρ effectively
controls how much memory is used, since the amount of nodes in
the quadtree is proportional to 1/ρ. We provide a more thorough
analysis of the memory usage in Section 5.2.

3.4. Unbiased Iterative Learning and Rendering

In order to accelerate learning, we use an iterative scheme similar
to the one proposed by Vorba et al. [VKv∗14]. We train a sequence
L̂1, L̂2, ..., L̂M where L̂1 is estimated with just BSDF sampling, and
for all k > 1, L̂k is estimated by combining samples of L̂k−1 and
the BSDF via multiple importance sampling. Sampling from the
previously learned distribution L̂k−1 to estimate L̂k often drasti-
cally accelerates the convergence compared to naïve Monte Carlo
estimation.

Given a path vertex v, we sample a direction from L̂k−1 as fol-
lows. First, we descend spatially through the binary tree to find
the leaf node containing the vertex position xv. Next, we sample
the direction ~ωv from the quadtree contained in the spatial leaf
node via hierarchical sample warping as described by McCool and
Harwood [MH97]. We provide pseudocode in the supplementary
material.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

Path tracing

Total budget: 0 s, 12 spp Total budget: 1 s, 60 spp Total budget: 5 s, 252 spp Total budget: 21 s, 1020 spp

Ours

Total budget: 0 s, 12 spp Total budget: 1 s, 28 spp Total budget: 5 s, 124 spp Total budget: 25 s, 1020 spp

Figure 3: Our method converges most rapidly in the beginning of rendering, yielding a reasonable preview of the final image much more
quickly than regular path tracing. Except for Dahm and Keller [DK17], existing path guiding approaches perform training in a separate pass,
neglecting the rendering preview.

Exponential Sample Count. If we used an equal amount of path
samples in each iteration, then only a small (the last) fraction of
samples would contribute to the image directly, with the (preced-
ing) majority being used “just” for learning the incident radiance
field. This would not be a problem if the learned distributions were
proportional to the full numerator in Equation (2), in which case
a single sample would theoretically suffice for finding the scaling
factor between the numerator and the PDF. Our distributions, how-
ever, only approximate the incident radiance requiring us to still
integrate the full product over the hemisphere. We thus propose to
increase the number of path samples in each iteration geometrically.
More precisely, we use twice as many samples to learn L̂k than to
learn L̂k−1. Learning L̂k then takes approximately twice longer than
learning L̂k−1, but L̂k has roughly half the variance. In practice,
the variance reduction is typically much higher due to the positive
effects of the iterated importance sampling scheme. Nevertheless, in
the worst-case of iterative learning not improving the convergence,
only half of the samples is “wasted” on learning the distributions.

Another important property of doubling the sample count in each
iteration surfaces when considering our spatial subdivision scheme.
Since spatial subdivision of a binary-tree leaf node halves its volume,
doubling the amount of samples ensures that approximately the same
number of samples reaches both new leaf nodes. Therefore, even
locally, L̂k generally does not become noisier than L̂k−1.

Online Rendering Preview. To provide the user with a quick vi-
sual feedback, we progressively display images synthesized using
the path samples of the current iteration. As long as we do not
fuse path samples across iterations, the image will be unbiased
since all path samples within the same iteration are mutually in-
dependent. Since each iteration starts rendering the image from
“scratch”, naïvely displaying the latest result would lead to sudden
quality degradations whenever a new iteration starts. We avoid this
by switching to the image of the current iteration only once it accu-

mulated more samples than the previous iteration. In Figure 3 we
demonstrate the rendering preview of the TORUS scene comparing
against a path tracer. In the supplementary video we compare the
preview on additional scenes against other methods.

3.5. Balancing Learning and Rendering

In this section, we describe how to split a given compute budget B,
which can be defined either as time or number of samples, between
learning and rendering such that the variance of the final image is
minimized. For iteration k, we define the budget to unit variance
τk =Vk ·Bk, i.e. the product of variance of image Ik computed using
paths traced in iteration k, and the budget Bk spent on constructing
these paths. Variance Vk is computed as the mean variance of pixels
in Ik. Assuming we keep using L̂k for guiding the paths until we
reach B, we can estimate the variance of the final image as

V̂k =
τk

B̂k
, (3)

where B̂k is the remaining budget from the start of the k-th iteration:
B̂k = B−∑

k−1
i=1 Bi.

Our goal is to find the optimal iteration k̂ that minimizes the
final-image variance, i.e. k̂ = argmink V̂k. To that end, we assume
that training has monotonically diminishing returns; more precisely,
the sequence τk is monotonically decreasing and convex. It follows
that V̂k is also convex (see Appendix A). We can then find k̂ as the
smallest k for which V̂k+1 > V̂k holds. Since we need to evaluate
V̂k+1, we need to perform one more iteration than would be optimal,
but the wasted computation is greatly outweighed by the variance
reduction due to our automatic budgeting mechanism.

We can use a similar approach to optimally trade-off training and
rendering when aiming for a target variance. In this case, we can
estimate the rendering budget B̄k required to reach a target variance

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

SPPM MEMLT Vorba et al. Ours Reference

MSE: 0.936 2067.754 0.150 0.144 —
Samples per pixel: — — 4264 5812 —

Minutes (training + rendering): 0 + 7.5 0 + 7.5 5.3 + 6.4 1.1 + 6.4 —

Figure 4: Equal-time comparison of our method versus previous work on the POOL scene; we report training + rendering time in minutes.
The caustics inside the pool consist of difficult specular, diffuse, specular light transport that varies spatially due to the waves. The computation
efficiency of our method allows drawing 1.36× more samples than the method by Vorba et al. [VKv∗14] at equal time, achieving a slight
improvement in overall noise. The optimal training-rendering budgeting is in this case automatically determined to be 15% and 85%,
respectively.

PT w/ NEE BDPT MEMLT Vorba et al. Ours Reference

MSE: 7.949 2.800 0.742 1.052 0.694 —
Samples per pixel: 3100 2560 — 1104 1812 —

Minutes (training + rendering): 0 + 5.1 0 + 5.1 0 + 4.85 5.5 + 3.9 1.1 + 3.9 —

Figure 5: The glass tabletop and the mirror next to the window in the KITCHEN scene challenge the efficiency of most light-transport
algorithms. The window is glass-free to permit path-tracing algorithms to perform connections, e.g. for next-event estimation (NEE).
Nevertheless, unidirectional path tracing is unable to capture most of the non-trivial indirect-illumination patterns. Bidirectional path tracing
struggles with constructing light sub-paths through the window (just like SPPM would). As in the POOL scene, MEMLT avoids “fireflies”
but has convergence issues. Both guiding methods, even with just a vanilla path tracer without NEE, are capable of finding difficult light
paths. However, our approach performs similar compared to Vorba et al.’s despite being purely unidirectional. The scene is a slightly modified
version of "Country Kitchen" by Jay-Artist (CC BY 3.0).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

101 102

10−2

10−1

100

101

102

103

Ours
Vorba et al.
PT w/ NEE
MEMLT
SPPM

Torus

101 102

10−1

100

101

102

103

Ours
Vorba et al.
PT w/ NEE
MEMLT
SPPM

Pool

101 102

100

101

102

103

104

105

Ours
Vorba et al.
PT w/ NEE
MEMLT
SPPM

Kitchen

102

10−1

100

101

102

103

Ours
Vorba et al.
PT w/ NEE
MEMLT
SPPM

Hairball

Figure 6: Mean squared error (MSE) plotted as a function of time
demonstrates the convergence of individual algorithms. The dash-
dotted vertical lines indicate when our method stops training and
switches to render-only mode for the rest of the given budget: 5, 7.5,
5, and 20 min. In these plots the rendering component of Vorba et
al.’s algorithm is synchronized with ours.

V̄ via B̄k = τk/V̄ , and training is stopped whenever the total budget
B̃k > B̃k−1, where

B̃k = B̄k +
k−1

∑
i=1

Bi . (4)

This successfully finds k̂ = argmink B̃k, because the sequence B̃k is
convex whenever Bk is monotonically increasing, which is the case
with the exponential sample count.

4. Results

We integrated our algorithm into the Mitsuba renderer [Jak10]. Pseu-
docode of the main parts is included in the supplementary material.
We compare our technique to several other approaches, including
bidirectional path tracing [VG94], stochastic progressive photon
mapping (SPPM) [HJ09], manifold exploration metropolis light
transport (MEMLT) [JM12], and, closely related to ours, the tech-
nique by Vorba et al. [VKv∗14, VK16], which represents incident
radiance using gaussian-mixture models (GMM); we use the au-
thors’ implementation for comparison. To ensure the path-guiding
GMMs are properly trained, we always use 30 pre-training passes,
300000 importons and photons, adaptive environment sampling,
and we leave all other parameters at their default values. In all com-
parisons images were rendered with an equal time budget. For our
method, training happens within its time budget. We do not count
pre-training of the GMMs as part of their budget; we give GMMs as
much rendering time as our method uses.

Both path-guiding methods—Vorba et al.’s and ours—render with
unidirectional path tracing without next event estimation (NEE) to

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

200 1000 5000

4
12
28
60
124
252
508
1020
2044
4092
8188

Variance Over Time

0 4 12 28 60 124 252 508 1020 2044 4092

10−3

10−2

10−1 0%

2%

6%

14% 30%

62%0%

0%

1%

3% 6%
12%

25%
51%

0%

0%

0%

1%
1%

2% 5% 10% 20%
41%

82%

200-sample budget
1000-sample budget
5000-sample budget

Fixed-budget Variance

Figure 7: Left: variance as a function of time plotted for subsequent
training iterations; the legend shows the number of samples invested
into training the guiding distributions. The dashed extension lines
indicate convergence if we continued rendering, i.e. we did not
switch to the next training iteration. Right: intersections of the
convergence curves with three dash-dotted lines representing three
distinct sample budgets. For each sample budget, the intersections
form a convex sequence when plotted according to the total number
of samples. The annotations show the percentage of the sample
budget that was spent on training the distributions.

emphasize the difference in guiding distributions. Application to
more sophisticated algorithms such as BDPT or VCM [GKDS12]
would only mask the shortcomings of path guiding and obscure
the comparisons. Lastly, none of the methods perform product im-
portance sampling, since its benefits are orthogonal (and comple-
mentary) to path guiding. Extending our work to perform product
importance sampling is discussed in Section 7. All results presented
onwards can be inspected using an interactive viewer in the supple-
mentary material.

The TORUS scene contains very long chains of specular interac-
tions and a significant amount of specular-diffuse-specular (SDS)
light transport, which is notoriously difficult to simulate with most
unbiased algorithms. Path guiding approaches are able to learn and
importance sample the high-frequency transport as long as it can be
discovered by the underlying algorithm. In Figure 1 we render the
scene with our method comparing at equal-time to the method by
Vorba et al. [VKv∗14]. The GMMs struggle at learning the correct
distribution on the torus consistently, manifesting as uneven conver-
gence; see Figure 9. Our method achieves a slightly worse MSE as
Vorba et al.’s method, while our automatic budgeting mechanism
assigned 44 s to training out of the total 298 s compute time.

The POOL scene features difficult SDS light transport in a realistic
scenario: rendering under-water caustics caused by waves. Standard
(unguided) path tracing performs very poorly on this scene; the
reference image in Figure 4 (right) took 18 h to render and still
exhibits residual noise in some regions. By the nature of density
estimation the SPPM algorithm can handle such scenes without
bright pixels (“fireflies”), but it still struggles with preserving the
sharpness of caustics and produces splotchy artifacts on the window
frames. The manifold-walk-enhanced MLT (MEMLT) preserves the
caustics’ sharpness, but its uneven visual convergence manifests
on the over-exposed window frame and darker pool ladder. Both
guided unidirectional path tracers suffer from occasional outliers,

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

Table 1: Statistics of Vorba et al.’s method and ours on all scenes
presented in this paper.

Scene Method Memory Training Rendering SPP MSE

TORUS
Vorba et al. 2.5 MB 5.1 min 4.2 min 8932 0.017
Ours 4.2 MB 0.73 min 4.2 min 11568 0.018

HAIRBALL
Vorba et al.

511.2 MB 60 min 17.3 min 1492 0.246
7.2 MB 6.7 min 17.3 min 476 1.250

Ours 6.1 MB 1.7 min 17.3 min 20596 0.022

POOL
Vorba et al. 12.8 MB 5.3 min 6.4 min 4264 0.150
Ours 8.0 MB 1.1 min 6.4 min 5812 0.144

KITCHEN
Vorba et al. 23.8 MB 5.5 min 3.9 min 1104 1.052
Ours 15.6 MB 1.1 min 3.9 min 1812 0.694

but estimate the overall brightness more reliably than MEMLT and
without the bias of SPPM. Compared to the method by Vorba et al.,
our SD-trees slightly reduce the number of “fireflies” as well as the
average noise at roughly two thirds of the memory; see Table 1.

The KITCHEN scene in Figure 5 consists of various glossy materi-
als and complex geometries that are lit by sunlight entering through
a glass-free window and being reflected by a glass tabletop. The
reflection of the sun on the ceiling viewed through the mirror—an
SDS interaction depicted in the yellow inset—poses a challenge
for most algorithms, including MEMLT. When properly guided, a
simple unidirectional path tracer without NEE is capable of effi-
ciently sampling these narrow, high-energy regions of path space
even without Markov-chain mutations. Despite learning the incident
light field only unidirectionally, our method performs the best in
terms of MSE thanks to the ability to render faster than Vorba et
al.’s method. Our technique also requires slightly less memory in
this scene.

5. Analysis

In this section, we analyze the convergence and memory usage and
discuss the threshold for subdividing the binary tree.

5.1. Convergence

Comparison to Other Methods. Figure 6 compares the conver-
gence of our algorithm to several competing methods. Pre-training
time of Vorba et al.’s algorithm is not included in these plots, but in-
stead its rendering phase is synchronized with ours. In the beginning
of the rendering process, MEMLT and SPPM often outperform our
method. However, the inherently unpredictable nature of MEMLT
and the asymptotically slower convergence of SPPM allow our
method to eventually overtake. The “flat” regions in the training
phase of our algorithm are due to delayed switching of the online
preview to the result of the current iteration, as described in Sec-
tion 3.4. We provide a visualization of the progressive rendering
process in the supplementary video.

Convergence as a Function of Training Budget. Figure 7 demon-
strates the convergence as a function of how many samples are used
for training the guiding distributions. The curves represent the con-
vergence of subsequent, geometrically growing iterations. Later

Vorba et al. Ours

Memory overhead: 511 MB 7.2 MB 6.1 MB
Minutes (training + render): 60.0 + 17.3 6.7 + 17.3 1.7 + 17.3

Figure 8: Comparison of our method and the method by Vorba et
al. [VKv∗14] on a heavily tesselated hairball inside a glass cube.
With its default parameters, Vorba et al.’s algorithm (left) exhibits
worse performance and 83× higher memory consumption than ours
(right). The benefits of our approach become even more prominent
in a roughly equal-memory comparison (middle vs right).

iterations converge faster to a lower error thanks to their better-
trained guiding distributions. When a fixed compute budget is given,
our balancing scheme, as described in Section 3.5, automatically
chooses when to stop the iterative training and continue rendering
until the budget is exhausted. In the scatter plot on the right, we show
the estimated final variance for the increasingly-trained distributions
for the target budget of 200, 1000, and 5000 samples. The three
series empirically demonstrate the convexity of this optimization
problem (the small deviations from a perfectly convex shape are due
to the discrete refinement decisions). Our balancing scheme always
correctly predicted the optimum.

5.2. Memory Usage

The memory usage of our directional quadtrees can be estimated
using the subdivision threshold ρ: with the energy-based refinement
from Section 3.3 there can be no fewer than 1/ρ leaf nodes. The
maximum number is unbounded for arbitrarily narrow energy distri-
butions (e.g. a delta light source). We remedy this by limiting the
maximum depth of the quadtree to 20, which is sufficient for guiding
towards extremely narrow radiance sources without precision issues.
The worst case of refining 1/ρ quads to the maximum depth results
in the upper bound of 4 ·20/ρ on the amount of nodes.

We found ρ = 0.01 to work well, which in practice results in an
average of roughly 300 nodes per quadtree. The maximum amount
of nodes across all quadtrees and results we tested is 792; well below
the theoretical maximum of 4 · 20/ρ = 8000. Our quadtree nodes
require 5 bytes of memory each, translating to an average footprint
of 1.5 kb, and an upper bound of 40 kb, for each quadtree. A single
mixture model with 8 gaussians requires 273 bytes.

According to the iterative training and rendering scheme, only
two SD-trees L̂k−1 and L̂k have to be kept in memory at the same
time. However, because the spatial binary tree of L̂k is merely a
more refined version of the spatial tree of L̂k−1, it is straightforward
to use the same spatial tree for both distributions, where each leaf
contains two directional quadtrees; one for L̂k−1 and one for L̂k.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

Jensen

Training: 3 h
Rendering: 3 h

Ours

Training: 0.73 min
Rendering: 0.57 min

Vorba et al.

Training: 4.9 min
Rendering: 0.57 min

Figure 9: We show directional radiance distributions discretized in Jensen’s [Jen95] datastructure (left), our quadtrees (middle), and Vorba
et al.’s [VKv∗14] gaussian mixture model (GMM; right). We used the same spatial locations to train all three directional distribution models.
The left column was trained and rendered for 6 h to provide a reasonably converged reference. Our and Vorba et al.’s distributions have each
been computed within 5 min. At the location marked in yellow, Vorba et al.’s method exhibits high variance as the GMM failed to represent the
light reflected by the glass cube (right; yellow inset). The distributions at the locations marked in orange and red demonstrate the instability
of the GMM under similar incident illumination, and its struggle to capture multiple modes robustly. Our quadtrees reliably capture all 5
important modes with high precision. We provide additional visualizations in the supplementary video.

This means, that only a single spatial binary tree has to be traversed
for each path vertex.

In all our scenes, the full guiding distribution never exceeded
20 mb (see Table 1) without anyhow limiting the subdivision of the
spatial binary tree. However, we allow specifying an upper bound
of nodes in the spatial tree to ensure memory requirements are kept.
Once the limit is reached, the spatial tree is not subdivided further.

5.3. Binary Tree Subdivision Threshold

As described in Section 3.3, we subdivide a leaf node of the binary
tree whenever it records more then c ·

√
2k path vertices during

the previous iteration. We derive c from the desired number of
samples s that each quadtree leaf node should receive. All quadtree
leaves carry a roughly equal amount of energy and are thus sampled
with similar probability during training. The average number of

samples a quadtree leaf receives is then s = S/Nl , where S is the
total amount of samples drawn from a quadtree, and Nl is the amount
of leaf nodes in it. Our quadtrees have 300 nodes on average (see
Section 5.2), and almost never more than that. We found, that s = 40
samples per quadtree leaf node results in a reasonably converged
quadtree, and we thus choose c such that binary tree leaf nodes
get subdivided after the first iteration (k = 0) when this number of
samples is reached. We thus obtain

c =
s ·Nl√

2k
=

40 ·300
1

= 12000 . (5)

6. Discussion and Future Work

Spherical vs. Hemispherical Domain. Our directional quadtree
distributions cover the entire sphere of directions parameterized
using world-space-aligned cylindrical coordinates. This has two key
benefits compared to most previous work [Jen95,VKv∗14,HEV∗16]

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

that covers only the upper (oriented) hemisphere. Firstly, we do not
need to discriminate distributions according to their angular dis-
tance to the normal at the shading point. This simplifies the search
to merely selecting the spatially nearest distribution and avoids the
need for rotating the distribution to prevent overblurring in the direc-
tional domain. Secondly, spherical distributions naturally generalize
to volumetric path tracing and typically perform better on organic
structures, such as foliage and hair. We demonstrate this on the
HAIRBALL scene in Figure 8 consisting of cylindrical hairs inside
a glass cube. We compare our orientation-independent cylindrical
parametrization to the hemispherical parameterization of Vorba et
al. [VKv∗14]. To remain accurate, Vorba et al.’s method has to
densely populate the hairball with hemispherical distributions, lead-
ing to a significant memory and performance cost. The cylindrical
parametrization is decoupled from geometric properties, and results
in almost 83× lower memory consumption and significantly im-
proved convergence rate. Adjusting the parameters of Vorba et al.’s
method to approximately match our memory consumption yields
significantly slower convergence.

Quadtree vs. Gaussian Mixture Model. The main advantage of
quadtrees over gaussian-mixture models is the increased robust-
ness. The expectation-maximization algorithm utilized by Vorba et
al. [VKv∗14] is not guaranteed to find the global optimum, and the
distribution can vary dramatically across nearby spatial locations;
see Figure 9. In contrast, our quadtrees adapt to the energy distribu-
tion hierarchically, top-down and adapt the resolution such that each
leaf contains roughly the same amount of energy. The convergence
of the rendering algorithm (within one iteration) is thus more stable.

Geometric Iterations vs. Moving Average. The final image could
be estimated using an exponential moving average of all path sam-
ples. Since in this case earlier samples are drawn from a suboptimal
distribution their variance can be very large, potentially resulting in
higher overall variance. Our geometrically growing iterations ensure
that the last iteration has a sufficient number of high-quality samples
to provide an accurate estimate. Samples in previous iterations are
invested only into constructing path-guiding distributions.

Temporal path guiding. We described an algorithm for guiding
light transport in a static scene. For time-dependent effects, e.g.
motion blur, it would be beneficial to refine the SD-tree also over
the temporal domain. We suspect that adding a fourth dimension t to
our spatial binary tree and including it in the dimension-alternating
subdivision scheme is a straightforward extension which is capable
of handling temporal effects.

Multiple and Product Importance Sampling. Sampling scatter-
ing directions purely from our quadtrees can lead to arbitrarily large
variance in regions where where the incident radiance is approxi-
mated badly. We avoid this problem by combining directions from
our quadtrees with BSDF samples via multiple importance sam-
pling, which guarantees that the variance can not be much worse
compared to pure BSDF sampling. The performance of sampling
with our quadtrees could be further improved by ignoring quads in
the bottom hemisphere. This can be done explicitly with a rectifying
parameterization by Bitterli et al. [BNJ15], though the mapping

would no longer preserve areas. Another possible solution is to gen-
erate several samples from the BSDF and the quadtree, and to then
perform importance resampling [TCE05] towards their product. This
technique never generates samples in the wrong hemisphere and
approaches product importance sampling as the number of candidate
samples for resampling approaches infinity.

A potentially more fruitful avenue for future research would be to
directly sample the product of the BSDF and the incident radiance.
Herholz et al. [HEV∗16] demonstrated the benefits of product impor-
tance sampling with GMMs. We could similarly extend our work by
adopting the approach of Jarosz et al. [JCJ09]. This would require
converting the incident radiance distributions into Haar wavelets and
representing BSDFs in spherical harmonics. Because our quadtrees
only approximate the incident radiance, however, it is advisable to
still combine the product with the pure BSDF via multiple impor-
tance sampling to bound the error.

Guiding sophisticated sampling algorithms. We presented re-
sults with guiding applied to a unidirectional path tracer. The delib-
erate choice of using a simple path tracer was made to best highlight
the strengths and weaknesses of different guiding approaches; more
sophisticated path-construction algorithms would only mask the
shortcomings in regions where they already sample the integrand
well. In practice, however, we recommend combining path-guiding
with NEE via multiple importance sampling due to the ease of im-
plementation and low performance overhead. More sophisticated
light-transport algorithms typically also benefit from path guiding
as demonstrated by Vorba et al. [VKv∗14] for BDPT and VCM.

7. Conclusion

We presented a practical, easy-to-implement, unbiased path-guiding
approach with a low-latency rendering preview. Our approach
does not require tuning hyper-parameters; ρ = 0.01, c = 12000 per-
formed well in all our tests. The only parameter to be specified is
the maximum memory footprint of the SD-tree. While more so-
phisticated algorithms may outperform our technique in specific
situations, its high performance and the aforementioned advantages
of SD-trees make them appealing for production environments. We
demonstrated this on a simple unidirectional path tracer that out-
performed more sophisticated techniques in all our comparisons.
Another benefit is the fairly even spatial convergence, which we
expect to increase the attractiveness of our guiding approach for
animation rendering, when combined with a suitable technique for
removing fireflies. Finally, since path-guiding is largely agnostic to
the underlying path-sampling algorithm, SD-trees can be easily ap-
plied to BDPT, PPM, VCM, MLT, or other techniques, significantly
improving their performance beyond the demonstrated results.

Acknowledgements

We thank Brian McWilliams for helpful discussions and insights
into various machine learning topics, and for narrating the supple-
mentary video. We thank Ryusuke Villemin for valuable feedback;
specifically, for pointing out the applicability of importance resam-
pling. We are grateful to Marios Papas for proofreading, to Olesya
Jakob for remodeling the TORUS scene by Cline et al. [CTE05], to
Ondřej Karlík for the POOL scene, to Blend Swap user Jay-Artist

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Thomas Müller, Markus Gross, Jan Novák / Practical Path Guiding for Efficient Light-Transport Simulation

for the KITCHEN scene [Bit16] (CC BY 3.0), which we modified
slightly, and to Samuli Laine for the Hairball model [McG11].

References

[BAJ08] BUDGE B. C., ANDERSON J. C., JOY K. I.: Caustic Forecast-
ing: Unbiased Estimation of Caustic Lighting for Global Illumination.
Computer Graphics Forum (2008). 2

[BHGS06] BOUBEKEUR T., HEIDRICH W., GRANIER X., SCHLICK C.:
Volume-Surface Trees. Computer Graphics Forum 25, 3 (2006), 399–406.
2

[Bit16] BITTERLI B.: Rendering resources, 2016. https://benedikt-
bitterli.me/resources/. 10

[BNJ15] BITTERLI B., NOVÁK J., JAROSZ W.: Portal-masked environ-
ment map sampling. Computer Graphics Forum 34, 4 (June 2015). 9

[CTE05] CLINE D., TALBOT J., EGBERT P.: Energy redistribution path
tracing. ACM Trans. Graph. 24, 3 (July 2005), 1186–1195. 9

[DK17] DAHM K., KELLER A.: Learning light transport the reinforced
way. CoRR abs/1701.07403 (2017). 2, 4

[GKB09] GASSENBAUER V., KŘIVÁNEK J., BOUATOUCH K.: Spatial
directional radiance caching. Computer Graphics Forum 28, 4 (2009),
1189–1198. Eurographics Symposium on rendering, EGSR ’09. 2

[GKDS12] GEORGIEV I., KŘIVÁNEK J., DAVIDOVIČ T., SLUSALLEK
P.: Light transport simulation with vertex connection and merging. ACM
Trans. Graph. 31, 6 (Nov. 2012), 192:1–192:10. 1, 6

[HEV∗16] HERHOLZ S., ELEK O., VORBA J., LENSCH H., KŘIVÁNEK
J.: Product Importance Sampling for Light Transport Path Guiding.
Computer Graphics Forum (2016). 2, 8, 9

[HJ09] HACHISUKA T., JENSEN H. W.: Stochastic progressive photon
mapping. ACM TOG 28, 5 (Dec. 2009), 141:1–141:8. 6

[HP02] HEY H., PURGATHOFER W.: Importance sampling with hemi-
spherical particle footprints. In Proceedings of the 18th Spring Conference
on Computer Graphics (New York, NY, USA, 2002), SCCG ’02, ACM,
pp. 107–114. 2

[HPJ12] HACHISUKA T., PANTALEONI J., JENSEN H. W.: A path space
extension for robust light transport simulation. ACM TOG 31, 6 (Nov.
2012), 191:1–191:10. 1

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 6

[JCJ09] JAROSZ W., CARR N. A., JENSEN H. W.: Importance sampling
spherical harmonics. Computer Graphics Forum 28, 2 (Apr. 2009), 577–
586. 9

[Jen95] JENSEN H. W.: Importance driven path tracing using the photon
map. In Rendering Techniques (Vienna, 1995), Springer Vienna, pp. 326–
335. 2, 8

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon Mapping.
A. K. Peters, Ltd., Natick, MA, USA, 2001. 1

[JM12] JAKOB W., MARSCHNER S.: Manifold exploration: A markov
chain monte carlo technique for rendering scenes with difficult specular
transport. ACM Trans. Graph. 31, 4 (July 2012), 58:1–58:13. 6

[Kaj86] KAJIYA J. T.: The rendering equation. Computer Graphics 20
(1986), 143–150. 2

[Kel97] KELLER A.: Instant radiosity. In Proc. SIGGRAPH 97 (New York,
NY, USA, 1997), Annual Conference Series, ACM Press/Addison-Wesley
Publishing Co., pp. 49–56. 1

[KMA∗15] KETTUNEN M., MANZI M., AITTALA M., LEHTINEN J.,
DURAND F., ZWICKER M.: Gradient-domain path tracing. ACM Trans.
Graph. 34, 4 (July 2015), 123:1–123:13. 1

[LW93] LAFORTUNE E. P., WILLEMS Y. D.: Bi-directional path tracing.
In Compugraphics ’93 (1993), pp. 145–153. 1

[LW95] LAFORTUNE E. P., WILLEMS Y. D.: A 5d tree to reduce the
variance of monte carlo ray tracing. In Rendering Techniques ’95 (Proc.
of the 6th Eurographics Workshop on Rendering) (1995), pp. 11–20. 2

[McG11] MCGUIRE M.: Computer graphics archive, August 2011.
http://graphics.cs.williams.edu/data. 10

[MH97] MCCOOL M. D., HARWOOD P. K.: Probability trees. In Pro-
ceedings of the Graphics Interface 1997 Conference, May 21-23, 1997,
Kelowna, BC, Canada (May 1997), pp. 37–46. 3

[ND12] NOVÁK J., DACHSBACHER C.: Rasterized bounding volume
hierarchies. Computer Graphics Forum 31, 2 (2012), 403–412. 2

[SL06] STEINHURST J., LASTRA A.: Global Importance Sampling of
Glossy Surfaces Using the Photon Map. Symposium on Interactive Ray
Tracing 0 (2006), 133–138. 2

[TCE05] TALBOT J. F., CLINE D., EGBERT P.: Importance resampling
for global illumination. In Proceedings of the Sixteenth Eurographics Con-
ference on Rendering Techniques (Aire-la-Ville, Switzerland, Switzerland,
2005), EGSR ’05, Eurographics Association, pp. 139–146. 9

[VG94] VEACH E., GUIBAS L. J.: Bidirectional estimators for light
transport. In EG Rendering Workshop (1994). 6

[VG97] VEACH E., GUIBAS L. J.: Metropolis light transport. In 97 (New
York, NY, USA, 1997), Annual Conference Series, ACM Press/Addison-
Wesley Publishing Co., pp. 65–76. 1

[VK16] VORBA J., KŘIVÁNEK J.: Adjoint-driven russian roulette and
splitting in light transport simulation. ACM TOG 35, 4 (jul 2016). 1, 2, 6

[VKv∗14] VORBA J., KARLÍK O., ŠIK M., RITSCHEL T., KŘIVÁNEK

J.: On-line learning of parametric mixture models for light transport
simulation. ACM TOG 33, 4 (Aug. 2014). 1, 2, 3, 5, 6, 7, 8, 9

Appendix A: Proof of V̂k Being Convex

We want to show, that V̂k is convex, i.e.

2V̂k ≤ V̂k+1 + V̂k−1 . (6)

Proof Let ∀k : Bk > 0, B̂k > 0, τk > 0. We write Eq. 6 terms of τ as

2τk

B̂k
≤ τk+1

B̂k+1
+

τk−1

B̂k−1
, (7)

2τk ≤ τk+1
B̂k

B̂k+1
+ τk−1

B̂k

B̂k−1
. (8)

We use the convexity of τk to obtain the tighter inequality

2τk ≤ (2τk− τk−1)
B̂k

B̂k+1
+ τk−1

B̂k

B̂k−1
, (9)

2τk ≤ 2τk
B̂k

B̂k+1
+ τk−1

(
B̂k

B̂k−1
− B̂k

B̂k+1

)
. (10)

We further tighten the inequality by using τk < τk−1 as

2τk ≤ 2τk
B̂k

B̂k+1
+ τk

(
B̂k

B̂k−1
− B̂k

B̂k+1

)
, (11)

2≤ B̂k

B̂k+1
+

B̂k

B̂k−1
=

B̂k

B̂k−Bk
+

B̂k

B̂k +Bk−1
. (12)

Through re-arrangement and simplification we obtain

Bk−1−Bk−
Bk−1Bk

B̂k
≤ 0 , (13)

which holds, because the sequence Bk is monotonically increasing
and always positive (see Section 3).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.


