Neuralangelo: High-Fidelity Neural Surface Reconstruction
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Figure 1. We present Neuralangelo, a framework for high-fidelity 3D surface reconstruction from RGB images using neural volume
rendering, even without auxiliary data such as segmentation or depth. Shown in the figure is an extracted 3D mesh of a courthouse.

Abstract

Neural surface reconstruction has been shown to be pow-
erful for recovering dense 3D surfaces via image-based neu-
ral rendering. However, current methods struggle to recover
detailed structures of real-world scenes. To address the
issue, we present Neuralangelo, which combines the rep-
resentation power of multi-resolution 3D hash grids with
neural surface rendering. Two key ingredients enable our ap-
proach: (1) numerical gradients for computing higher-order
derivatives as a smoothing operation and (2) coarse-to-fine
optimization on the hash grids controlling different levels of
details. Even without auxiliary inputs such as depth, Neu-
ralangelo can effectively recover dense 3D surface structures
from multi-view images with fidelity significantly surpass-
ing previous methods, enabling detailed large-scale scene
reconstruction from RGB video captures.

1. Introduction

3D surface reconstruction aims to recover dense geomet-
ric scene structures from multiple images observed at differ-
ent viewpoints [9]. The recovered surfaces provide structural
information useful for many downstream applications, such
as 3D asset generation for augmented/virtual/mixed real-
ity or environment mapping for autonomous navigation of
robotics. Photogrammetric surface reconstruction using a
monocular RGB camera is of particular interest, as it equips
users with the capability of casually creating digital twins of
the real world using ubiquitous mobile devices.

Classically, multi-view stereo algorithms [6, 16,29, 34]
had been the method of choice for sparse 3D reconstruc-
tion. An inherent drawback of these algorithms, however, is
their inability to handle ambiguous observations, e.g. regions
with large areas of homogeneous colors, repetitive texture



patterns, or strong color variations. This would result in
inaccurate reconstructions with noisy or missing surfaces.
Recently, neural surface reconstruction methods [36,41,42]
have shown great potential in addressing these limitations.
This new class of methods uses coordinate-based multi-layer
perceptrons (MLPs) to represent the scene as an implicit
function, such as occupancy fields [25] or signed distance
functions (SDF) [36,41,42]. Leveraging the inherent con-
tinuity of MLPs and neural volume rendering [22], these
techniques allow the optimized surfaces to meaningfully in-
terpolate between spatial locations, resulting in smooth and
complete surface representations.

Despite the superiority of neural surface reconstruction
methods over classical approaches, the recovered fidelity
of current methods does not scale well with the capacity of
MLPs. Recently, Miiller et al. [23] proposed a new scalable
representation, referred to as Instant NGP (Neural Graphics
Primitives). Instant NGP introduces a hybrid 3D grid struc-
ture with a multi-resolution hash encoding and a lightweight
MLP that is more expressive with a memory footprint log-
linear to the resolution. The proposed hybrid representation
greatly increases the representation power of neural fields
and has achieved great success at representing very fine-
grained details for a wide variety of tasks, such as object
shape representation and novel view synthesis problems.

In this paper, we propose Neuralangelo for high-fidelity
surface reconstruction (Fig. 1). Neuralangelo adopts In-
stant NGP as a neural SDF representation of the underlying
3D scene, optimized from multi-view image observations
via neural surface rendering [36]. We present two findings
central to fully unlocking the potentials of multi-resolution
hash encodings. First, using numerical gradients to compute
higher-order derivatives, such as surface normals for the
eikonal regularization [8, 12,20,42], is critical to stabilizing
the optimization. Second, a progressive optimization sched-
ule plays an important role in recovering the structures at
different levels of details. We combine these two key ingredi-
ents and, via extensive experiments on standard benchmarks
and real-world scenes, demonstrate significant improvements
over image-based neural surface reconstruction methods in
both reconstruction accuracy and view synthesis quality.

In summary, we present the following contributions:

e We present the Neuralangelo framework to naturally
incorporate the representation power of multi-resolution
hash encoding [23] into neural SDF representations.

* We present two simple techniques to improve the quality
of hash-encoded surface reconstruction: higher-order
derivatives with numerical gradients and coarse-to-fine
optimization with a progressive level of details.

* We empirically demonstrate the effectiveness of Neu-
ralangelo on various datasets, showing significant im-
provements over previous methods.

2. Related work

Multi-view surface reconstruction. Early image-based pho-
togrammetry techniques use a volumetric occupancy grid to
represent the scene [4, 16, 17,29,32]. Each voxel is visited
and marked occupied if strict color constancy between the
corresponding projected image pixels is satisfied. The pho-
tometric consistency assumption typically fails due to auto-
exposure or non-Lambertian materials, which are ubiquitous
in the real world. Relaxing such color constancy constraints
across views is important for realistic 3D reconstruction.

Follow-up methods typically start with 3D point clouds
from multi-view stereo techniques [0, 7,28, 34] and then per-
form dense surface reconstruction [13, 14]. Reliance on the
quality of the generated point clouds often leads to missing
or noisy surfaces. Recent learning-based approaches aug-
ment the point cloud generation process with learned image
features and cost volume construction [2, 10,40]. However,
these approaches are inherently limited by the resolution of
the cost volume and fail to recover geometric details.

Neural Radiance Fields (NeRF). NeRF [22] achieves re-
markable photorealistic view synthesis with view-dependent
effects. NeRF encodes 3D scenes with an MLP mapping 3D
spatial locations to color and volume density. These predic-
tions are composited into pixel colors using neural volume
rendering. A problem of NeRF and its variants [1,30,43,46],
however, is the question of how an isosurface of the vol-
ume density could be defined to represent the underlying 3D
geometry. Current practice often relies on heuristic thresh-
olding on the density values; due to insufficient constraints
on the level sets, however, such surfaces are often noisy
and may not model the scene structures accurately [36,41].
Therefore, more direct modeling of surfaces is preferred for
photogrammetric surface reconstruction problems.

Neural surface reconstruction. For scene representations
with better-defined 3D surfaces, implicit functions such as
occupancy grids [24,25] or SDFs [42] are preferred over
simple volume density fields. To integrate with neural vol-
ume rendering [22], different techniques [36,4 1] have been
proposed to reparametrize the underlying representations
back to volume density. These designs of neural implicit
functions enable more accurate surface prediction with view
synthesis capabilities of unsacrificed quality [42].
Follow-up works extend the above approaches to real-
time at the cost of surface fidelity [18, 37], while oth-
ers [3, 5,44] use auxiliary information to enhance the re-
construction results. Notably, NeuralWarp [3] uses patch
warping given co-visibility information from structure-from-
motion (SfM) to guide surface optimization, but the patch-
wise planar assumption fails to capture highly-varying sur-
faces [3]. Other methods [5,45] utilize sparse point clouds
from SfM to supervise the SDF, but their performances are
upper-bounded by the quality of the point clouds, as with



classical approaches [45]. The use of monocular depth and
segmentation as auxiliary data has also been explored with
unconstrained image collections [3 1] or using scene repre-
sentations with hash encodings [44]. In contrast, our work
Neuralangelo builds upon hash encodings [23] to recover
surfaces but without the need for auxiliary inputs used in
prior work [3, 5,31, 44,45]. Concurrent work [38] also
proposes coarse-to-fine optimization for improved surface
details, where a displacement network corrects the shape
predicted by a coarse network. In contrast, we use hierarchi-
cal hash grids and control the level of details based on our
analysis of higher-order derivatives.

3. Approach

Neuralangelo reconstructs dense structures of the scene
from multi-view images. Neuralangelo samples 3D locations
along camera view directions and uses a multi-resolution
hash encoding to encode the positions. The encoded features
are input to an SDF MLP and a color MLP to composite
images using SDF-based volume rendering.

3.1. Preliminaries

Neural volume rendering. NeRF [22] represents a 3D scene
as volume density and color fields. Given a posed camera
and a ray direction, the volume rendering scheme integrates
the color radiance of sampled points along the ray. The i-th
sampled 3D position x; is at a distance ¢; from the camera
center. The volume density o; and color c; of each sampled
point are predicted using a coordinate MLP. The rendered
color of a given pixel is approximated as the Riemann sum:

N
¢(o,d) = Zwici, where w; = Ta;. (D

i=1

Here, a; = 1 — exp(—0;9;) is the opacity of the i-th ray
segment, 0; = t;41 — t; is the distance between adjacent
samples, and T; = H;’;ll (1 — «;) is the accumulated trans-
mittance, indicating the fraction of light that reaches the
camera. To supervise the network, a color loss is used be-
tween input images ¢ and rendered images ¢:

Lrce = Hé - C||1 . )

However, surfaces are not clearly defined using such density
formulation. Extracting surfaces from density-based repre-
sentation often leads to noisy and unrealistic results [36,41].

Volume rendering of SDF. One of the most common surface
representations is SDF. The surface S of an SDF can be
implicitly represented by its zero-level set, i.e., S = {x €
R3|f(x) = 0}, where f(x) is the SDF value. In the context
of neural SDFs, Wang ef al. [36] proposed to convert volume
density predictions in NeRF to SDF representations with a
logistic function to allow optimization with neural volume

rendering. Given a 3D point x; and SDF value f(x;), the
corresponding opacity value o; used in Eq. | is computed as

Dy (f(xi) = Po(f(xi41)) )
@; = max L0, 3)
< P (f(xi))
where @, is the sigmoid function. In this work, we use the
same SDF-based volume rendering formulation [36].

Multi-resolution hash encoding. Recently, multi-resolution
hash encoding proposed by Miiller et al. [23] has shown
great scalability for neural scene representations, generating
fine-grained details for tasks such as novel view synthesis.
In Neuralangelo, we adopt the representation power of hash
encoding to recover high-fidelity surfaces.

The hash encoding uses multi-resolution grids, with each
grid cell corner mapped to a hash entry. Each hash entry
stores the encoding feature. Let {V71, ..., VL, } be the set of dif-
ferent spatial grid resolutions. Given an input position x;, we
map it to the corresponding position at each grid resolution
Vi as x;; = x; - V;. The feature vector v;(x;,;) € R® given
resolution V; is obtained via trilinear interpolation of hash
entries at the grid cell corners. The encoding features across
all spatial resolutions are concatenated together, forming a
v(x;) € ReL feature vector:

Y(xi) = (71 (xi1), - YL(X0,1))- “)

The encoded features are then passed to a shallow MLP.
One alternative to hash encoding is sparse voxel structures
[30,33,39,43], where each grid corner is uniquely defined
without collision. However, volumetric feature grids require
hierarchical spatial decomposition (e.g. octrees) to make the
parameter count tractable; otherwise, the memory would
grow cubically with spatial resolution. Given such hierarchy,
finer voxel resolutions by design cannot recover surfaces
that are misrepresented by the coarser resolutions [33]. Hash
encoding instead assumes no spatial hierarchy and resolves
collision automatically based on gradient averaging [23].

3.2. Numerical Gradient Computation

We show in this section that the analytical gradient w.r.t.
position of hash encoding suffers from localities. Therefore,
optimization updates only propagate to local hash grids,
lacking non-local smoothness. We propose a simple fix to
such a locality problem by using numerical gradients. An
overview is shown in Fig. 2.

A special property of SDF is its differentiability with a
gradient of the unit norm. The gradient of SDF satisfies the
eikonal equation ||V f(x)[2 = 1 (almost everywhere). To
enforce the optimized neural representation to be a valid
SDF, the eikonal loss [£] is typically imposed on the SDF
predictions:

N
Lok = NZ IV f(xi)ll2 — 1)%, )
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Figure 2. Using numerical gradients for higher-order derivatives
distributes the back-propagation updates beyond the local hash grid
cell, thus becoming a smoothed version of analytical gradients.

where N is the total number of sampled points. To allow for
end-to-end optimization, a double backward operation on
the SDF prediction f(x) is required.

The de facto method for computing surface normals of
SDFs V f(x) is to use analytical gradients [36,41,42]. Ana-
Iytical gradients of hash encoding w.r.t. position, however,
are not continuous across space under trilinear interpolation.
To find the sampling location in a voxel grid, each 3D point
x; would first be scaled by the grid resolution V;, written as
X;; = X; - V;. Let the coefficient for (tri-)linear interpolation
be 8 = x;; — |X;,]. The resulting feature vectors are

Y(%i0) = n([xi)) - (L= B) +v([xit]) - B, (6)

where the rounded position |x; |, [x;,] correspond to the
local grid cell corners. We note that rounding operations | -]
and [-] are non-differentiable. As a result, the derivative of
hash encoding w.r.t. the position can be obtained as

Oy (x; 0 0
) — i) (=) + i)

= (%)) - (V) +m(xiil)- Vi (D)

The derivative of hash encoding is local, i.e., when x;
moves across grid cell borders, the corresponding hash en-
tries will be different. Therefore, the eikonal loss defined
in Eq. 5 only back-propagates to the locally sampled hash
entries, i.e. v;(|x;,]) and v;([x;,;]). When continuous sur-
faces (e.g. a flat wall) span multiple grid cells, these grid cells
should produce coherent surface normals without sudden
transitions. To ensure consistency in surface representation,
joint optimization of these grid cells is desirable. However,
the analytical gradient is limited to local grid cells, unless all
corresponding grid cells happen to be sampled and optimized
simultaneously. Such sampling is not always guaranteed.

To overcome the locality of the analytical gradient of
hash encoding, we propose to compute the surface normals
using numerical gradients. If the step size of the numeri-
cal gradient is smaller than the grid size of hash encoding,
the numerical gradient would be equivalent to the analyti-
cal gradient; otherwise, hash entries of multiple grid cells

would participate in the surface normal computation. Back-
propagating through the surface normals thus allows hash
entries of multiple grids to receive optimization updates si-
multaneously. Intuitively, numerical gradients with carefully
chosen step sizes can be interpreted as a smoothing opera-
tion on the analytical gradient expression. An alternative of
normal supervision is a teacher-student curriculum [35,47],
where the predicted noisy normals are driven towards MLP
outputs to exploit the smoothness of MLPs. However, ana-
Iytical gradients from such teacher-student losses still only
back-propagate to local grid cells for hash encoding. In con-
trast, numerical gradients solve the locality issue without the
need of additional networks.

To compute the surface normals using the numerical gra-
dient, additional SDF samples are needed. Given a sampled
point x; = (z;,y;, 2;), we additionally sample two points
along each axis of the canonical coordinate around x; within
a vicinity of a step size of e. For example, the z-component
of the surface normal can be found as

fOi+e)) = fF((%i — €))

vwf(xz) = %€ )

®)

where €, = [€, 0, 0]. In total, six additional SDF samples are
required for numerical surface normal computation.

3.3. Progressive Levels of Details

Coarse-to-fine optimization can better shape the loss land-
scape to avoid falling into false local minima. Such a strat-
egy has found many applications in computer vision, such
as image-based registration [19,21,26]. Neuralangelo also
adopts a coarse-to-fine optimization scheme to reconstruct
the surfaces with progressive levels of details. Using nu-
merical gradients for the higher-order derivatives naturally
enables Neuralangelo to perform coarse-to-fine optimization
from two perspectives.

Step size €. As previously discussed, numerical gradients
can be interpreted as a smoothing operation where the step
size € controls the resolution and the amount of recovered
details. Imposing L. with a larger € for numerical surface
normal computation ensures the surface normal is consistent
at a larger scale, thus producing consistent and continuous
surfaces. On the other hand, imposing L. with a smaller
€ affects a smaller region and avoids smoothing details. In
practice, we initialize the step size € to the coarsest hash grid
size and exponentially decrease it matching different hash
grid sizes throughout the optimization process.

Hash grid resolution V. If all hash grids are activated from
the start of the optimization, to capture geometric details, fine
hash grids must first “unlearn” from the coarse optimization
with large step size € and “relearn” with a smaller e. If such
a process is unsuccessful due to converged optimization,
geometric details would be lost. Therefore, we only enable
an initial set of coarse hash grids and progressively activate
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Figure 3. Qualitative comparison on the DTU benchmark [11]. Neuralangelo produces more accurate and higher-fidelity surfaces.

finer hash grids throughout optimization when € decreases to
their spatial size. The relearning process can thus be avoided
to better capture the details. In practice, we also apply weight
decay over all parameters to avoid single-resolution features
dominating the final results.

3.4. Optimization

To further encourage the smoothness of the reconstructed
surfaces, we impose a prior by regularizing the mean curva-
ture of SDF. The mean curvature is computed from discrete
Laplacian similar to the surface normal computation, other-
wise, the second-order analytical gradients of hash encoding
are zero everywhere when using trilinear interpolation. The
curvature 1oss L., is defined as:

1 N
Ecurv = N ; }v2f(X7,)| . (9)

We note that the samples used for the surface normal com-
putation in Eq. 8 are sufficient for curvature computation.
The total loss is defined as the weighted sum of losses:

L = LraB + Weik Leik + Weury Leury - (10)

All network parameters, including MLPs and hash encoding,
are trained jointly end-to-end.

4. Experiments

Datasets. Following prior work, we conduct experiments on
15 object-centric scenes of the DTU dataset [ | 1]. Each scene
has 49 or 64 images captured by a robot-held monocular
RGB camera. The ground truth is obtained from a structured-
light scanner. We further conduct experiments on 6 scenes

of the Tanks and Temples dataset [15], including large-scale
indoor/outdoor scenes. Each scene contains 263 to 1107
images captured using a hand-held monocular RGB camera.
The ground truth is obtained using a LIDAR sensor.

Implementation details. Our hash encoding resolution
spans 2° to 2! with 16 levels. Each hash entry has a chan-
nel size of 8. The maximum number of hash entries of each
resolution is 222, We activate 4 and 8 hash resolutions at the
beginning of optimization for DTU dataset and Tanks and
Temples respectively, due to differences in scene scales. We
enable a new hash resolution every 5000 iterations when the
step size € equals its grid cell size. For all experiments, we
do not utilize auxiliary data such as segmentation or depth
during the optimization process.

Evaluation criteria. We report Chamfer distance and F1
score for surface evaluation [11, 15]. We use peak signal-to-
noise ratio (PSNR) to report image synthesis qualities.

4.1. DTU Benchmark

We show qualitative results in Fig. 3 and quantitative
results in Table 1. On average, Neuralangelo achieves the
lowest Chamfer distance and the highest PSNR, even without
using auxiliary inputs. The result suggests that Neuralangelo
is more generally applicable than prior work when recover-
ing surfaces and synthesizing images, despite not performing
best in every individual scene.

We further ablate Neuralangelo against the following
conditions: 1) AG: analytical gradients, 2) AG+P: analytical
gradients and progressive activating hash resolutions, 3) NG:
numerical gradients with varying e. Fig. 4 shows the results
qualitatively. AG produces noisy surfaces, even with hash
resolutions progressively activated (AG+P). NG improves
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Figure 4. Qualitative comparison of different coarse-to-fine optimization scheme. When using the analytical gradient (AG and AG+P),
coarse surfaces often contain artifacts. While using numerical gradients (NG) leads to a better coarse shape, details are also smoothed. Our

solution (NG+P) produces both smooth surfaces and fine details.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

NeRF [22] 190 160 1.8 058 228 127 147 167 205 107 088 253 106 115 0.96 1.49

—> VoISDF [41] 1.14 126 081 049 125 070 072 129 118 070 066 1.08 042 061 0.55 0.86
é NeusS [36] 1.00 137 093 043 110 065 057 148 109 083 052 120 035 049 0.54 0.84
o HF-NeusS [38] 076 132 070 039 106 063 063 115 112 080 052 122 033 049 0.50 0.77
§ RegSDF [45] { 060 141 064 043 134 0.62 060 090 092 1.02 060 059 030 041 039 0.72
% NeuralWarp [3] T 049 071 038 038 079 081 082 120 1.06 068 066 074 041 0.63 0.51 0.68
& AG 067 1.04 084 039 143 123 111 124 154 08 050 1.01 037 051 044 0.88
g AG+P 059 095 046 034 119 070 079 1.19 137 069 049 093 033 044 044 0.73
5 NG 048 081 043 035 08 071 061 126 106 074 047 079 033 045 043 0.65
NG+P (Ours) 037 072 035 035 087 054 053 129 097 073 047 074 032 041 043 0.61
RegSDF [45] } 2478 23.06 2347 2221 2857 2553 21.81 2889 26.81 2791 2471 2513 26.84 21.67 28.25 25.31
NeusS [36] 26.62 23.64 2643 2559 30.61 32.83 2924 3371 26.85 3197 32.18 2892 2841 3500 34.8I 29.79

- VoISDF [41] 2628 25.61 2655 26.76 31.57 31.50 29.38 3323 28.03 32.13 33.16 31.49 30.33 3490 34.75 30.38
x NeRF[22] 2624 2574 2679 27.57 31.96 31.50 29.58 32.78 28.35 32.08 3349 31.54 31.00 3559 3551 30.65
é AG 2997 2498 23.11 30.27 30.60 31.27 29.27 3422 2747 33.09 33.85 2998 2941 3569 35.11 30.55
AG+P 30.12 24.63 29.59 30.29 31.60 32.04 29.85 34.19 27.82 33.23 3395 29.15 29.44 3599 3567 31.17

NG 30.34 25.14 30.20 30.79 31.72 31.86 29.81 34.36 28.01 33.45 34.38 3039 29.88 36.02 35.74 31.47
NG+P (Ours) 30.64 27.78 32.70 34.18 35.15 35.89 31.47 36.82 30.13 3592 36.61 32.60 31.20 38.41 38.05 33.84

Table 1. Quantitative results on DTU dataset [11]. Neuralangelo achieves the best reconstruction accuracy and image synthesis quality.
Best result. Second best result. { Requires 3D points from SfM. Best viewed in color.

the smoothness of the surface, sacrificing details. Our setup
(NG+P) produces both smooth surfaces and fine details.

4.2. Tanks and Temples

As no public result is available for Tanks and Temples,
we train NeuS [36] and NeuralWarp [3] following our setup.
We also report classical multi-view stereo results using
COLMAP [27]. As COLMAP and NeuralWarp do not sup-
port view synthesis, we only report PSNR from NeuS. Re-
sults are summarized in Fig. 5 and Table 2.

Neuralangelo achieves the highest average PSNR and
performs best in terms of F1 score. Comparing against
NeusS [36], we can recover high-fidelity surfaces with intri-
cate details. We find that the dense surfaces generated from
COLMAP are sensitive to outliers in the sparse point cloud.
We also find that Neural Warp often predicts surfaces for the
sky and backgrounds potentially due to their color rendering

scheme following VoISDF [41]. The additional surfaces pre-
dicted for backgrounds are counted as outliers and worsen
F1 scores significantly. We instead follow NeuS [36] and
use an additional network [46] to model the background.

Similar to the DTU results, using the analytical gradient
produces noisy surfaces and thus leads to a low F1 score.
We further note that the reconstruction of Courthouse shown
in Figs. 1 and 5 are the same building of different sides,
demonstrating the capability of Neuralangelo for large-scale
granular reconstruction.

4.3. Level of Details

As Neuralangelo progressively optimizes the hash fea-
tures of increasing resolution, we inspect the progressive
level of details similar to NGLOD [33]. We show a qualita-
tive visualization in Fig. 6. While some surfaces are entirely
missed by coarse levels, for example, the tree, table, and
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Figure 5. Qualitative comparison on Tanks and Temples dataset [15]. Neuralangelo captures the scene details better compared to other
baseline approaches, while baseline approaches have missing or noisy surfaces.

bike rack, these structures are recovered by finer resolutions Thus, only relying on the continuity of local cells of coarse
successfully. The ability to recover missing surfaces demon- resolutions is not sufficient to reconstruct large continuous
strates the advantages of our spatial hierarchy-free design. surfaces. The result motivates the use of the numerical

Moreover, we note that flat surfaces are predicted at suf- gradients for the higher-order derivatives, such that back-

ficiently high resolutions (around Level 8 in this example). propagation is beyond local grid cells.
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Figure 6. Results at different hash resolutions. While some structures, such as the tree, table, and bike rack, are missed at coarse
resolutions (Level 4). Finer resolutions can progressively recover these missing surfaces. Flat continuous surfaces also require sufficiently
fine resolutions to predict (Level 8). The result motivates the non-local updates when using numerical gradients for higher-order derivatives.

F1 Score PSNR 1

NeuralWarp COLMAP NeuS NG+P NeuS NG+P

03] 271 [36] AG AG+P NG (Ours) [36] AG AG+P NG (Ours)

Barn 0.22 0.55 0.29 0.22 0.31 0.63 0.70 26.36 26.91 26.69 26.14 28.57
Caterpillar 0.18 0.01 0.29 0.23 0.24 0.30 0.36 25.21 26.04 25.12 26.16 27.81
Courthouse 0.08 0.11 0.17 0.08 0.09 0.24 0.28 23.55 2543 25.63 25.06 27.23
Ignatius 0.02 0.22 0.83 0.72 0.73 0.85 0.89 23.27 22.69 22.73 23.78 23.67
Meetingroom 0.08 0.19 0.24 0.04 0.05 0.27 0.32 25.38 28.13 28.05 27.44 30.70
Truck 0.35 0.19 0.45 0.33 0.37 0.44 0.48 23.71 23.89 23.95 22.99 25.43
Mean 0.15 0.21 0.38 0.27 0.30 0.45 0.50 24.58 25.51 25.36 25.26 27.24

Table 2. Quantitative results on Tanks and Temples dataset [15]. Neuralangelo achieves the best surface reconstruction quality and
performs best on average in terms of image synthesis. Best result. Second best result. Best viewed in color.
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Figure 7. Ablation results. (a) Surface smoothness improves
with curvature regularization Leurv. (¢) Concave shapes are better
formed with topology warmup.

4.4. Ablations

Curvature regularization. We ablate the necessity of curva-
ture regularization in Neuralangelo and compare the results
in Fig. 7(a). Intuitively, L.y acts as a smoothness prior by
minimizing surface curvatures. Without L, we find that
the surfaces tend to have undesirable sharp transitions. By
using L., the surface noises are removed.

Topology warmup. We follow prior work and initialize
the SDF approximately as a sphere [42]. With an initial
spherical shape, using L., also makes concave shapes diffi-
cult to form because L, preserves topology by preventing
singularities in curvature. Thus, instead of applying Ly
from the beginning of the optimization process, we use a
short warmup period that linearly increases the curvature
loss strength. We find this strategy particularly helpful for
concave regions, as shown in Fig. 7(b).

5. Conclusion

We introduce Neuralangelo, an approach for photogram-
metric neural surface reconstruction. The findings of Neu-
ralangelo are simple yet effective: using numerical gradients
for higher-order derivatives and a coarse-to-fine optimization
strategy. Neuralangelo unlocks the representation power of
multi-resolution hash encoding for neural surface reconstruc-
tion modeled as SDF. We show that Neuralangelo effectively
recovers dense scene structures of both object-centric cap-
tures and large-scale indoor/outdoor scenes with extremely
high fidelity, enabling detailed large-scale scene reconstruc-
tion from RGB videos. Our method currently samples pixels
from images randomly without tracking their statistics and
errors. Therefore, we use long training iterations to reduce
the stochastics and ensure sufficient sampling of details. It is
our future work to explore a more efficient sampling strategy
to accelerate the training process.
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