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A. Additional Hyper-parameters
Following prior work [14–16], we assume the region of

interest is inside a unit sphere. The total number of training
iterations is 500k. When a given hash resolution is not active,
we set the feature vectors to zero. We use a learning rate of
1× 10−3 with a linear warmup of 5k iterations. We decay
the learning rate by a factor of 10 at 300k and 400k. We
use AdamW [6] optimizer with a weight decay of 10−2.
We set weik = 0.1. The curvature regularization strength
wcurv linearly warms up 5×10−4 following the schedule of
learning rate and decays by the same spacing factor between
hash resolutions every time ϵ decreases. The SDF MLP
has one layer, while the color MLP has four layers. For
the DTU benchmark, we follow prior work [14–16] and
use a batch size of 1. For the Tanks and Temples dataset,
we use a batch size of 16. We use the marching cubes
algorithm [5] to convert predicted SDF to triangular meshes.
The marching cubes resolution is set to 512 for the DTU
benchmark following prior work [1, 14–16] and 2048 for the
Tanks and Temples dataset.

B. Additional In-the-wild Results
We present additional in-the-wild results collected at the

NVIDIA HQ Park and Johns Hopkins University in Figure 1.
The videos are captured by a consumer drone. The camera
intrinsics and poses are recovered using COLMAP [11]. To
define the bounding regions, we have developed an open-
sourced Blender add-on1 to allow users interactively se-
lect regions of interest using the sparse point cloud from
COLMAP. The surfaces are reconstructed using the same

1https://github.com/mli0603/BlenderNeuralangelo

F1 Score ↑
NeuS [14] Geo-Neus [2] Ours

Barn 0.29 0.33 0.70
Caterpillar 0.29 0.26 0.36
Courthouse 0.17 0.12 0.28
Ignatius 0.83 0.72 0.89
Meetingroom 0.24 0.20 0.32
Truck 0.45 0.45 0.48
Mean 0.38 0.35 0.50

Table 1. Additional quantitative results on Tanks and Temples
dataset [4]. Neuralangelo achieves the best surface reconstruction
quality and performs best on average in terms of image synthesis.
Best result. Second best result. Best viewed in color.

setup and hyperparameters as the Tanks and Temples dataset.
Neuralangelo successfully reconstructs complex geometries
and scene details, such as the buildings, sculptures, trees, um-
brellas, walkways, and etc. Using the same setup as Tanks
and Temples also suggests that Neuralangelo is generalizable
with the proposed set of hyper-parameters.

C. Additional Tanks and Temples Results

We present additional results on the Tanks and Temples
dataset [4] in this section.

Surface reconstruction. Concurrent with our work, Geo-
NeuS [2] uses the sparse point clouds from COLMAP [11]
to improve the surface quality. However, we find that in
large-scale in-the-wild scenes, the COLMAP point clouds
are often noisy, even after filtering. Using the noisy point
clouds may degrade the results, similarly observed in [18].
As evidence, we benchmark Geo-NeuS [2] on Tanks and
Temples (Table 1). We find that Geo-NeuS performs worse
than NeuS and Neuralangelo in most scenes.

RGB image synthesis. Due to similarities between adja-
cent video frames, we report PSNR by sub-sampling 10
times input video temporally and evaluating the sub-sampled
video frames. Qualitative comparison of Neuralangelo and
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Figure 1. Reconstruction results of NVIDIA HQ Park and Johns Hopkins University. Videos are captured by a consumer drone.

prior work NeuS [14] is shown in Fig 2. Neuralangelo
produces high-fidelity renderings compared to NeuS [14],
with details on the buildings and objects recovered. Neither
COLMAP [11] nor NeuralWarp [1] supports view synthesis
or accounts for view-dependent effects. Thus, we only re-

port the F1 score of the reconstructed surfaces for these two
approaches.
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Figure 2. Qualitative comparison of image rendering on the Tanks and Temples dataset [4]. Compared to NeuS [14], Neuralangelo
generates high-quality renderings with texture details on the buildings and objects.
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Figure 3. Qualitative comparison on additional scenes of the DTU benchmark [3]. Neuralangelo can produce both smooth surfaces and
detailed structures compared to prior work, despite limited improvement in simply textured and highly reflective objects.
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Figure 4. Qualitative comparison of RGB image synthesis on the DTU benchmark [3]. Compared to NeuS [14], Neuralangelo generates
high-fidelity renderings with minute details.



D. Additional DTU Results
We present additional results on the DTU benchmark [3]

in this section.

Surface reconstruction. We visualize the reconstructed
surfaces of additional scenes of the DTU benchmark. Quali-
tative comparison with NeuS [14] and NeuralWarp [1] are
shown in Fig. 3.

Compared to prior work, Neuralangelo not only can recon-
struct smoother surfaces such as in Scan 40, 63, and 69 but
also produces sharper details such as in Scan 63 and 118 (e.g.
the details of the pumpkin vine and the statue face). While
Neuralangelo performs better on average across scenes, we
note that the qualitative result of Neuralangelo does not im-
prove significantly in Scan 122, where the object of interest
has mostly diffuse materials and relatively simple textures.
Moreover, we find that Neuralangelo fails to recover details
compared to NeuS [14] when the scene is highly reflective,
such as Scan 69. Neuralangelo misses the button structures
and eyes. Such a finding agrees with the results of Instant
NGP [8], where NeRF using Fourier frequency encoding
and deep MLP performs favorably against multi-resolution
hash encoding for highly reflective surfaces. Future work
on improving the robustness of Neuralangelo in reflective
scenes, a drawback inherited from hash encoding, can further
generalize the application of Neuralangelo.

RGB image synthesis. In the paper, we report the PSNR re-
sult of Neuralangelo to quantify the image synthesis quality.
Due to the simplicity of the background, we only evaluate
the PSNR of the foreground objects given the object masks.
We visualize the rendered images in Fig. 4. We only choose
NeuS [14] as our baseline as NeuralWarp [1] does not gener-
ate rendered images.

Fig. 4 shows that Neuralangelo successfully renders the
detailed textures while NeuS produces overly smoothed im-
ages. The results suggest that Neuralangelo is able to pro-
duce high-fidelity renderings and capture details better.

DTU foreground mask. The foreground object masks are
used to remove the background for proper evaluation [1, 9,
14,16,19] on the DTU benchmark. We follow the evaluation
protocol of NeuralWarp [1] and dilate the object masks by
12 pixels. In all prior work, the foreground object masks
used are annotated and provided by the authors of IDR [16].

Chamfer distance (mm) ↓
IDR masks Our masks

NeuS [14] 1.48 0.99
NeuralWarp [1] 1.20 0.73
Ours 1.29 0.76

Table 2. Quantitative results on Scan 83 of the DTU dataset [3]
using object masks provided by IDR [16] and annotated by us.

However, we find that the provided masks are imperfect in
Scan 83. Fig. 5 shows that part of the object is annotated as
background. The masks provided by IDR also only include
the foreground objects while the ground truth point clouds
include the brick holding the objects. Thus, we manually
annotate Scan 83 and report the updated results in Table 2 for
additional comparison. We note that fixing the object masks
for Scan 83 leads to improved results across all methods.

E. Additional Ablations

We conduct additional ablations and summarize the re-
sults in this section.

Color network. For the Tanks and Temples dataset, we add
per-image latent embedding to the color network following
NeRF-W [7] to model the exposure variation across frames.
Qualitative results are shown in Fig. 6. After introducing the
per-image embedding, the floating objects used to explain
exposure variation have been greatly reduced.

Curvature regularization strength. The curvature regular-
ization adds a smoothness prior to the optimization. As the
step size ϵ decreases and finer hash grids are activated, finer
details may be smoothed if the curvature regularization is too
strong. To avoid loss of details, we scale down the curvature
regularization strength by the spacing factor between hash
resolutions each time the step size ϵ decreases. Details are
better preserved by decaying wcurv (Fig. 7).

Numerical v.s analytical gradient. We visualize in Fig. 8
the surface normals computed by using both numerical and
analytical gradients after the optimization finishes. At the
end of the optimization, the step size ϵ has decreased suf-
ficiently small to the grid size of the finest hash resolution.
Using numerical gradients is nearly identical to using an-
alytical gradients. Fig. 8 shows that the surface normals
computed from both numerical and analytical gradients are
indeed qualitatively similar, with negligible errors scattered
across the object.

Color network. By default, we follow prior work [14, 16]
and predict color conditioned on view direction, surface nor-
mal, point location, and features from the SDF MLP. We use
spherical harmonics following [17] to encode view direction
as it provides meaningful interpolation in the angular do-
main. When the data is captured with exposure variation in
the wild, such as the Tanks and Temples dataset, we further
add per-image appearance encoding following NeRF-W [7].

We have also implemented a more explicit color modeling
process. The color network is shown in Fig. 9, attempting to
better disentangle color-shape ambiguities. However, we do
not observe improvements in surface qualities using such a
decomposition design. The intrinsic decomposed color net-
work contains two branches – albedo and shading branches.
The final rendered image C ∈ R3 is the sum of the albedo
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Figure 5. We manually re-annotate the foreground object masks of the DTU dataset. We note that the object masks provided by IDR
miss the objects partially on Scan 83. The IDR masks also do not include the bricks holding objects, while ground truth point clouds have
the brick. Our updated segmentation masks fix the above issues for better evaluation.
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Figure 6. Qualitative comparison of normal maps without and
with per-image embedding. Floaters are greatly reduced with
per-image embedding.
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Figure 7. Qualitative comparison of without and with decaying
wcurv. Decaying wcurv reduces the regularization strength as ϵ
decreases, thus preserving details better.
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Figure 8. Qualitative visualizations of surface normals com-
puted from analytical gradient (AG) and numerical gradient
(NG). The results are nearly identical at the end of the optimization
due to the small step size ϵ.

image Ca and shading image Cs:

C = Φ(Ca + Cs), (1)

where Φ is the Sigmoid function to normalize the predictions
into the range of 0 to 1.

The albedo branch predicts RGB values Ca ∈ R3 that
are view-invariant. It receives point locations and features
from the SDF MLP as input. On the other hand, the shading
branch predicts gray values Cs ∈ R that is view dependent
to capture reflection, varying shadow, and exposure changes.
We opt for the single channel design for the shading branch
as specular highlights, exposure variations, and moving shad-
ows are often intensity changes [10]. The single-channel
gray color design also encourages the albedo branch to learn
the view-invariant color better as the shading branch is lim-
ited in its capacity. Other than the point locations and SDF
MLP features, the shading branch is additionally conditioned
on reflection direction and view direction following RefN-
eRF [13] to encourage better shape recovery. We use two
hidden layers for the albedo branch and two hidden layers
for the diffuse branch to make a fair comparison with the
default color network proposed by IDR [16].

We find that with the decomposed color network, the
shading branch indeed successfully explains view-dependent
effects (Fig. 9). However, flat surfaces tend to be carved
away, potentially due to the instability of dot product from re-
flection computation (Fig. 10). Our future work will explore
more principled ways for intrinsic color decomposition.

Computation time. We compare the training and inference
time in Table 3 across different setups using our implementa-
tion in PyTorch. The experiments are conducted on NVIDIA
V100 GPUs. We note that the training time per iteration
when using numerical gradients is longer than using ana-
lytical gradients due to additional queries of SDF. Using
numerical gradients experiences approximately a 1.2 times
slowdown compared to using analytical gradients. As NeuS
uses 8-layer MLP for SDF MLP and Neuralangelo uses
1-layer MLP, using numerical gradients is still faster than
NeuS [14]. We also compare the inference time for surface
extraction of 1283 resolution. As numerical gradients are
used only for training, the speed for NG and AG are the same.
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Figure 9. Color network design for intrinsic decomposition. The decomposition scheme includes albedo and shading images.
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Figure 10. Qualitative comparison of different color network designs. We find that the intrinsic decomposition we implemented lacks
smoothness in regions with homogeneous color, while the color network proposed by IDR [16] produces smooth surfaces.

Training time (s) Inference time (s)
NeuS [14] 0.16 0.19
NG (Ours) 0.12 0.08
AG 0.10 0.08

Table 3. Computational time comparison between NeuS [14],
AG and NG using Nvidia V100 GPUs. Training time reported is
per iteration and inference time reported is for surface extraction
of 1283 resolution. There is approximately a 1.2 times slowdown
in training time of ours compared to AG. Ours is still faster than
NeuS due to the smaller-sized MLP used. For inference time, both
ours and AG are more than 2 times faster than NeuS.

NG and AG are more than 2 times faster than NeuS [14] due
to the shallow MLP.

F. Derivation of Frequency Encoding

In the paper, we show that using analytical gradients for
higher-order derivatives of multi-resolution hash encoding
suffers from gradient locality. We show in this section that
Fourier frequency encoding [12], which empowers prior
work [14–16] on neural surface reconstruction, does not
suffer from such locality issue.

Given a 3D position xi, let the l-th Fourier frequency
encoding be

γl(xi) =
(
sin(2lπxi), cos(2lπxi)

)
. (2)

The derivative of γl(xi) w.r.t. position can thus be calculated
as

∂γl(xi)

∂xi
=

(
2lπ · cos(2lπxi),−2lπ · sin(2lπxi)

)
. (3)

We note that ∂γl(xi)
∂xi

is continuous across the space, and
thus does not suffer from the gradient locality issue as the
multi-resolution hash encoding. Moreover, the position xi

is present in the derivative, thus allowing for second-order
derivatives computation w.r.t. position for the curvature reg-
ularization.

While Fourier frequencies encoding is continuous, our
coarse-to-fine optimization with varying step size in theory
still anneals over the different frequencies when computing
higher-order derivatives for more robust optimization. We ex-
periment this idea on the DTU benchmark [3] and observed
an improved Chamfer distance: from 0.84 to 0.79. The im-
provement in surface reconstruction confirms the benefits of
using a coarse-to-fine optimization framework.
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