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Here we discuss the details of obtaining the data for the Lorenz-Mie phase
function and chopping of the peak. We also detail the CNN architecture that
we compared to in Figure 10 of the main paper. Lastly, we provide additional
results and evaluations of our method, and a comparison to the flux-limited
diffusion by Koerner et al. [2014]. While this document provides an overview
of the images, we recommend using the interactive viewer to best inspect
the differences between methods.
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1 LORENZ-MIE PHASE FUNCTION
We used MiePlot [Laven 2017] to extract a tabulated version of
Lorenz-Mie phase function for an aerosol with gamma-distributed
radii (in µm) with shape k = 2 and scale θ = 2. To obtain the final
shape, we averaged phase-function profiles for three visible colors,
red (650 nm), green (530 nm), and blue (450 nm), across 50 randomly
sampled radii from the gamma distribution.

To remove the diffraction peak, we replace the values within the
[0◦, 8◦] by taking the slope at 8◦ and extrapolating the function
as a line towards 0◦. We then renormalize the function to yield a
valid phase function and reduce the extinction coefficient according
to the fraction of scattered light contained in the chopped peak.
More precisely, the reduced extinction coefficient µ ′t is given by
µ ′t (x) = r · µt (x) with

r = 1 −
∫
S2

pp (cosθ ) dω̂,

where µt is the original extinction, pp is the portion of the phase
function which is chopped away, and cosθ is the z-component of
ω̂. In our case, r = 0.559. For modeling the scattering distribution
with a HG phase function we leave µt (x) unchanged and set the
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(a) Cartesian grid (b) Spherical shells (c) Local frame

Fig. 1. Warping the Cartesian 5 × 5 × 9 stencil into spherical shells.

д-parameter to the д measured from the Lorenz-Mie phase function.
In the case of modeling the scattering distribution with an isotropic
phase function, µ ′t (x) = µt (x)(1 − д) is computed via similarity
theory. For our data, д = 0.857.

2 CNN ARCHITECTURE
We experimented also with CNN architectures. The one used in the
paper in Figure 10 uses 2 layers of 3D convolution on the stencil
features. Both layers use 3x3x3 convolution kernels. The first layer
reduces the 5x5x9 stencil features to 3x3x7 values, the second re-
duces further to 1x1x5 values. The first convolution layer is using 50
filters, the second is using 100 filters. The filters are shared among
the different stencil levels (scales). The outputs of the second con-
volutional layers are combined across stencil levels and with the
angle feature and fed into 3 fully connected layers of width 400,
200 and 200 and then passed to the output unit. We use ReLU as
activation funtion on the fully connected layers. Overall, this net-
work architecture used around twice the number of parameters than
the MLP-based architecture that we propose, yet still performed
slightly worse in terms of quality and incurred significantly higher
computational overhead.

3 ALTERNATIVE POINT STENCILS

3.1 Spherical Stencil
We tried warping the Cartesian grid into spherical shells: each point
p is warped into point q on the shell as q = p ∥p∥∞/∥p∥2; see
Figure 1 for an illustration. While this makes the stencil rounder,
it did not significantly improve the quality. Nevertheless, due to
its more symmetrical shape it might be worth considering in cases
when orientation-dependent artifacts arise.
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3.2 Data-driven Stencil
We also investigated shaping the point stencil according to the
spatial distribution of fluence around the local frame centered at x
as described in the paper. We tabulated this distribution in a grid
by averaging Monte Carlo samples obtained from configurations
S which we generated in the same way as we do for generating
training data. We then warped a 7 × 7 × 7 stencil (we tried regular
and jittered spacing) such that the density of stencil points was
proportional to the tabulated fluence. This process produced slightly
anisotropic stencils on small scales and mostly isotropic ones on
larger scales. We suspect, that these stencils did not work as well
as our simpler ones because of their irregular spacing, making it
difficult to optimally filter the cloud density during training and
rendering.
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Lorenz-Mie phase function Henyey-Greenstein phase function (д = 0.857)

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 2. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN) on side-lit clouds illuminated by a sun-sky model.
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Lorenz-Mie phase function Henyey-Greenstein phase function (д = 0.857)

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 3. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN) on front-lit clouds illuminated by a sun-sky model.
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Lorenz-Mie phase function Henyey-Greenstein phase function (д = 0.857)

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 4. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN) on back-lit clouds illuminated by a sun-sky model.
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Lorenz-Mie phase function Henyey-Greenstein phase function (д = 0.857)

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 5. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN) on side-lit clouds illuminated by an environment map.
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Lorenz-Mie phase function Henyey-Greenstein phase function (д = 0.857)

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 6. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN) on front-lit clouds illuminated by an environment map.
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Lorenz-Mie phase function Henyey-Greenstein phase function (д = 0.857)

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 7. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN) on back-lit clouds illuminated by an environment map.
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(a) PT reference (b) RPNN (ours) (c) Flux-limited Diffusion

Fig. 8. Comparison of a path-traced reference, our radiance-predicting neural network (PRNN), and flux-limited diffusion (FLD) on side-lit clouds.
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(a) PT reference (b) RPNN (ours) (c) Flux-limited Diffusion

Fig. 9. Comparison of a path-traced reference, our radiance-predicting neural network (PRNN), and flux-limited diffusion (FLD) on front-lit clouds.
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(a) PT reference (b) RPNN (ours) (c) Flux-limited Diffusion

Fig. 10. Comparison of a path-traced reference, our radiance-predicting neural network (PRNN), and flux-limited diffusion (FLD) on back-lit clouds.
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Optically thin medium Optically thick medium

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 11. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN), which was trained on clouds, on side-lit non-cloud
shapes filled with an optically thin cloud-like medium (left) and an optically thick cloud-like medium (right).
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Optically thin medium Optically thick medium

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 12. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN), which was trained on clouds, on front-lit non-cloud
shapes filled with an optically thin cloud-like medium (left) and an optically thick cloud-like medium (right).
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Optically thin medium Optically thick medium

(a) PT reference (b) RPNN (ours) (c) PT reference (d) RPNN (ours)

Fig. 13. Comparison of a path-traced reference and our radiance-predicting neural network (PRNN), which was trained on clouds, on back-lit non-cloud
shapes filled with an optically thin cloud-like medium (left) and an optically thick cloud-like medium (right).
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