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Abstract

Path guiding is a family of adaptive variance reduction techniques in physically-based rendering, which
includes methods for sampling both direct and indirect illumination, surfaces and volumes but also for
sampling optimal path lengths and making splitting decisions. Since adoption of path tracing as a de
facto standard in the VFX industry several years ago, there has been an increased interest in producing
high-quality images with low amount of Monte Carlo samples per pixel. Path guiding, which has re-
ceived attention in the research community in the past few years, has proven to be useful for this task and
therefore has been adopted by Weta Digital. Recently, it has also been implemented in the Walt Disney
Animation Studios’ Hyperion and Pixar’s Renderman. The goal of this course is to share our practical
experience with path guiding in production and to provide self-contained overview of recently published
techniques and to discuss their pros and cons. We also take audience through theoretical background
of various path guiding methods which are mostly based on machine learning – used to adapt sampling
distributons based on observed samples – and zero-variance random walk theory – used as a framework
for combining different sampling decisions in an optimal way. At the end of our course, we discuss open
problems and invite researchers to further develop path guiding in their future work.

¹The presented work was conducted while the author was employed at ETH Zürich and Disney Research.
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Note

This manuscript is a draft. You can find the final version at
http://cgg.mff.cuni.cz/~jirka/path-guiding-in-production/2019/index.html
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1 Objectives

In this course we share our practical experience that we gained from using guiding methods in Manuka,
the production renderer at Weta Digital and from implementing guiding to Hyperion, the renderer used
at Walt Disney Animation Studios. Another goal of this course is to bring order to recently published
works on various guiding methods. Some are competing, some are orthogonal and some could be par-
tially combined to form even better sampling schemes. We identify these relationships and we provide
suggestions for important avenues of future research. We also cover introduction for people who are
not familiar with guiding methods, covering theory and some concepts from various fields like machine
learning or neutron transport that are behind guiding methods.

In summary, our main objectives are

• to share practical experience with guiding methods in production,
• to provide an overview of current guiding methods and discuss their strengths and weaknesses,
• to cover theoretical background to provide audience with solid understanding of path guiding, and
• to share open problems and possible research topics in the area with our community.
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2 Syllabus

2.1 14:00 — Opening Statement and Introduction, Jiri Vorba (15 min)

We introduce path guiding as a family of methods for variance reduction in Monte Carlo based path
tracers and state objectives of this course (see above). We provide motivation for adopting path guiding
in production, give an overview of some typical scenarios where path guiding methods can greatly re-
duce numbers of traced paths (e.g. indirect illumination, caustics, selection between many lights) and we
provide taxonomy of these methods based on the random decisions that they strive to improve.

2.2 14:15 — Theoretical Background, Jaroslav Krivanek (15 min)

View briefly review basic Monte Carlo rendering algorithms such as path tracing, light tracing, photon
mapping or bidirectional path tracing. We define the meaning of “path guiding” as an attempt to per-
form globally optimal decisions in path construction. We discuss various data-driven approaches for
learning the importance and relate it to basic problems in statistical learning such as density estimation
and regression. We briefly discuss the relation to the theory of zero-variance random walk and we list the
theoretical and practical requirements on good guiding methods such as computational efficiency, low
memory overhead, minimal overhead in simple scenes, robustness etc.

2.3 14:30 — Bayesian Inference in Many-light Sampling, Jaroslav Krivanek (15
min)

Production scenes often feature tens, hundreds or even thousands of lights while only varying subsets
are visible across the scene. This makes sampling of direct illumination challenging and unpredictable.
If path guiding learns optimal sampling decisions only for indirect illumination, the variance coming
from choosing a light source connection can still be inhibitive. Jaroslav will discuss a recent approach
by Vévoda et al. [2018] to sampling many lights based on Bayesian inference. Bayesian learning is based
on taking prior assumptions that are formed by subsequent observations (i.e. sampled paths) that provide
evidence about real statistical properties of a given scene including occlusion.

2.4 14:45 — Guiding and Shadow Rays, Alexander Keller (30 min)

Alex will introduce an alternative data-driven approach to many-light sampling which computes and
stores light source visibility first, and makes good use of this information during next-event estimation.
This results in a guiding technique for shadow rays, and has the potential to greatly reduce noise in path
tracing.

2.5 15:15 — “Practical Path Guiding” in Production, Thomas Müller (30 min)

We implemented the “Practical Path Guiding” algorithm [Müller et al., 2017] in Disney’s Hyperion ren-
derer [Burley et al., 2018] for use in movie production. Thomas will introduce the algorithm at a high
level and describe three extensions based on recently published material Müller et al. [2018] that we de-
veloped to further improve the algorithm’s effectiveness in a production environment. These extensions
are (i) inverse-variance-weighted sample combination to avoid wasted samples, (ii) spatio-directional fil-
tering to increase robustness against high-frequency illumination, and (iii) on-line learning of the BSDF
: guiding ratio to improve handling of highly glossy materials. Mitsuba source code containing the exten-
sions is available publicly at https://github.com/tom94/practical-path-guiding.
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2.6 15:45 — Break (15min)

2.7 16:00 — Volumetric path guiding, Sebastian Herholz (30 min)

In participating media, path construction is influenced by scattering direction and distance sampling,
Russian roulette, and splitting strategies. Sebastian will present a volumetric path construction tech-
nique Herholz et al. [2019] where all these sampling decisions are guided by a cached estimate of the
adjoint light transport solution. This sampling strategy is based on the theory of zero-variance transport
estimators, and it accounts for the spatial and directional variation in volumetric transport. Specifically,
paths are constructed incrementally by sampling collision distances proportionally to the product of trans-
mittance and the adjoint transport solution (i.e., in-scattered radiance). Scattering directions are likewise
sampled according to the product of the phase function and the incident radiance estimate. Combined
with an adaptive Russian roulette and splitting strategy tailored to volumes, variance is greatly reduced as
compared to uni-directional methods. Sebastian will also discuss his experience with implementing this
method in a production renderer such as Weta Digital’s Manuka.

2.8 16:30 — Guiding in path space, Johannes Hanika (30 min)

Johannes will take the ideas presented in the last talk, especially about volume sampling and Russian
roulette, and relate them to guiding of full paths in path space Simon et al. [2018]. Guiding new samples
along full guide paths instead of marginalised distributions which only guide low dimensional parts at a
time transparently includes all aspects. It also allows us to use simpler, uni-modal functions to represent
a continuous PDF around guide samples. However both marginalised caches and full paths come with
advantages and drawbacks. These properties will be systematically analysed and categorised, leading over
seamlessly into the next talk.

2.9 17:00 — Open problems and future work, Jiri Vorba (15min)

We identify the most pressing problems and share them with the research community to enable further
exploration of path guiding methods. We also discuss the possibility of combination between some of
these methods so that the best of them would form more efficient algorithms.

Some of the aspects we cover are

• the problem of so called global exploration which is related to finding a useful path first before it
can be locally explored,

• efficiency driven Russian roulette,
• problems specific to marginalised/cached guiding methods,
• problems related to “path space path guiding”,
• problems specific to direct illumination sampling and light selection.
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5 Introduction
JIŘÍ VORBA, Weta Digital Ltd.

Since the advent of path tracing in movie production several years ago, the complexity of rendered
scenes has grown substantially. They often include many hard-to-sample light transport effects like for
example strong indirect illumination, occlusions, many lights, broad range of materials with various scat-
tering profiles (BSDFs and phase functions), caustics, sub-surface scattering, hair and fur, and volumetric
effects (Fig. 1). This challenges path tracing based on Monte Carlo integration which is infamous for its
poor convergence rate. In practice, we need to trace many paths, average their contributions across each
pixel and wait long tens of hours to obtain clean, noiseless image.

Thus, production rendering systems usually apply several standard techniques to decrease the amount
of noise. An essential one is adaptive sampling in the image planewhich changes density of samples across
pixels in order to equalize the noise amount [Fascione et al., 2019]. The idea is that light transport in some
pixels is easier than in others and thus we can redistribute the sampling budget to donate more samples to
problematic pixels. Another standard way to reduce the number of sampled paths is to employ denoising.
Unfortunately, variance of samples in complex scenes is often so high that denoising still needs a relatively
high number of samples to produce images without visible artifacts. The last resort taken in virtually all
production systems is clamping of difficult light transport which reduces the photorealistic quality of
rendered images.

These solutions do not address the primary source of the noise which comes from MC light transport
simulation within the scene. To reduce the noise and thus rendering times, researchers have proposed
many importance sampling schemes and their combinations through multiple importance sampling. The
idea is to invest more time to path sampling which is amortized by producing high quality samples. In
other words, we want to distribute paths so that most of them contribute significantly to the computed
pixel while the number of paths that is terminated without making any contribution is reduced to min-
imum. Unfortunately, sampling schemes used in practice are often imperfect mostly because they are
local. That is they are locally aware of materials but unaware of global scene properties like configura-
tion of geometry and light sources within the scene. They thus cannot adapt to the given scene which
results in repeating the same sampling patterns until convergence. For example even sophisticated algo-
rithms based on multiple importance sampling of complete paths like bidirectional path tracing or vertex
connection and merging often fail in scenes with non-trivial occlusion.

Thus recently, attention has been paid to path guiding, data-driven adaptive sampling schemes which
can learn from sampled paths and can significantly improve MC convergence rate. The basic idea is that
we can learn frompreviously sampled paths and harvest precious information about the light transport be-
tween light sources and the camera. We can use this information to improve distribution of subsequently
sampled paths in the scene so that they bring significant contributions to the sampled pixels.

5.1 Goals

We would like to share our practical experience that we gained from implementing and using these meth-
ods in production renderers. Namely, we have been using guidingmethods atWeta Digital in theManuka
renderer and recently, we implemented guiding to the Hyperion renderer used at Walt Disney Animation
Studios. Further, we share insights gained from our research in this area.

One goal of this course is to sort and classify the many recently published works on various guiding
methods [Keller and Dahm, 2019, Dahm and Keller, 2018, Herholz et al., 2016, 2019, Müller et al., 2017,
Vorba et al., 2014, Vorba and Křivánek, 2016, Simon et al., 2018, Vévoda et al., 2018]. Some are compet-
ing, some are orthogonal and some could be partially combined to form even better sampling schemes.

We identify these relationships and we provide suggestions for important avenues of future research
in guiding methods. We hope to spur a fruitful research community across the industry so that it helps
shaping the best possible light transport algorithm.

We also provide an introduction for people who are not familiar with guiding methods, covering
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theory and some concepts from related fields like machine learning or neutron transport that are behind
the adaptive sampling schemes.

5.2 Overview of the Course

In Sec. 6, we start by providing background in Monte Carlo based light transport algorithms, statistical
and machine learning methods, and zero-variance sampling theory which provides useful insights into
path guiding.

We go over family of path guiding methods in Sec. 7, where we classify the methods based on their
application within the light transport simulation. Further, we also share some practical insights from
using path guiding at Weta Digital and we sort methods by their features and implementation details. We
conclude by discussing important features of successful guiding methods from perspective of production.

In Sec. 8 and 9, we introduce two competing approaches to guided many-lights sampling which also
learn occlusion within the scene to significantly improve the sampling efficiency. While the former is
used in Corona, a renderer focused on architecture visualization and product design, the later was shown
to achieve interactive frame rates in a GPU implementation.

In Sec. 10, we introduce the “Practical Path Guiding” algorithm which we implemented in Disney’s
Hyperion renderer and we describe its three recent extensions. These extensions improve the algorithm’s
efficiency in the production environment.

We continue by describing a compact solution for path guiding in volumes in Sec. 11. This approach
builds on zero-variance theory and shows importance of guiding all various kinds of sampling decisions
involved in path sampling. Namely, it guides sampling directions, distance along the rays, and it extends
guided Russian roulette and splitting (see Sec. 7.7) from surfaces to participating media.

In Sec. 12, we introduce conceptually different approach to path guiding from all techniques discussed
so far. The major distinction is, that unlike other methods, it does not use guiding caches distributed in
the scene, but rather keeps selection of full previously sampled paths that are used for subsequent guided
path sampling. We discuss advantages and drawbacks of this method.

We conclude by Sec. 13 where we discuss possible avenues of future work and where we identify some
most pressing issues of current path guiding solutions.
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6 TheoreticalBackground
JAROSLAV KŘIVÁNEK, Charles University, Prague/Render Legion

Note

This section is draft. You can find the final version at
http://cgg.mff.cuni.cz/~jirka/path-guiding-in-production/2019/index.html

6.1 Monte Carlo Light Transport Algorithms

View briefly review basic Monte Carlo rendering algorithms such as path tracing, light tracing, photon
mapping or bidirectional path tracing.

6.2 Data-driven, Statistical Learning

We discuss various data-driven approaches for learning the importance and relate it to basic problems in
statistical learning such as density estimation and regression.

6.3 Zero-variance Theory

We briefly discuss the relation of path guiding to the theory of zero-variance random walk.

6.4 Machine Learning Foundations

Subsequently, we discuss the basic machine learning concepts of the various existing methods such as
maximum a posterior estimation, Bayesian inference, or online Expectation-Maximization and we will
relate the basic concepts of the various existing methods to the requirements on successful guiding meth-
ods.

References
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7 PathGuiding
JIŘÍ VORBA, Weta Digital Ltd.

By path guiding we refer to techniques which use a global knowledge about the scene to distribute
transport paths. This knowledge, more specifically approximation of radiance field in the scene and addi-
tional sampling statistics, is learned from previous samples or in a pre-process step. As we incrementally
construct paths vertex by vertex as described in Sec. 6.1, we bias random decisions taken in the process
to guide the paths towards important regions in the scene. In these regions, paths are very likely to make
significant contributions to the image. We can bias (i.e. change probability of) multiple decisions along
each path, like choosing direction after each scattering event, free path sampling in volumes, absorption
or choosing a light source for connection. Note, that biasing in this sense does not introduce bias (sys-
tematic error) in the image but results in the expected (correct) solution.

Figure 2: We illustrate the benefits of path guiding which learns from previous samples on a scene ren-
dered by bi-directional path tracing (BDPT). Light transport in this scene is difficult for sampling because
sun light enters the room through a small gap. Path guiding significantly reduces noise (left) as opposed
to traditional BDPT. The path guiding performance depends on the number of samples used for learning
the global information about the transport in the scene as shown in the insets and plots. The illustration
is borrowed from work of [Vorba et al., 2014].

7.1 Applications

We can classify path guiding techniques according to their application. Path guiding can aid path tracing
where path sampling starts at the camera as well as light tracing where sampling starts at light sources.

We begin by considering path tracing case as this is the most implemented algorithm in production.
Path tracing in production scenes must efficiently handle sampling many lights, occlusion, indirect illu-
mination, glossy materials, and ideally deal with caustic lighting. Various path guiding methods were
developed over time to aid all these sampling problems. In next sections, we give an overview of path
guiding methods for efficient sampling of both direct illumination (Sec. 7.2) and indirect illumination
(Sec. 7.3). We pay special attention to caustics in Sec. 7.5, a special indirect illumination type, which
are nearly impossible to render by path tracer without directional guiding. In Sec. 7.6, we briefly discuss
performance of guiding methods on glossy materials.
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Path guiding can learn to sample optimal path lengths and even suggest when we should split the
traced paths to achieve superior performance, which is important for efficient sampling of indirect illu-
mination. For this purpose, we describe guided Russian roulette and splitting in Sec. 7.7.

In the next section, Sec. 7.8, we discuss benefits of guided emission for light tracing and photons which
enables using these algorithms in scenes of production scale. We continue by discussion on application
of path guiding to bi-directional algorithms in Sec. 7.9.

We conclude by Sec. 7.10 and Sec. 7.11, where we discuss differences of various guiding solutions and
list their desired properties respectively.

7.2 Direct illumination.

Computing direct illumination efficiently at every point in the scene is crucial for light transport per-
formance. By sampling of direct illumination, we mean choosing the last segment of the path that is
connected to a light source. It is important to realize that inefficient computation of direct illumination
will also project into indirect illumination.

In most rendering systems, we have two sampling strategies for computing direct illumination. We
either rely on hitting the light source with finite area or finite solid angle by unidirectional sampling (a
reflected ray intersects the light source) or we explicitly sample a position/direction at the light source – a
strategy known asnext-event estimation (NEE).These two strategies are combined bymultiple importance
sampling (MIS) which weighs each sample contribution.

We understand path guiding as an adaptive method for sampling in the space of paths and as such, it
can learn to improve both unidirectional and NEE sampling. In fact, there are various factors that can be
learned from previous samples.

For unidirectional sampling, methods are the same as for indirect illumination. We learn directional
distributions of direct illumination (or distributions that combine both direct and indirect illumination)
andwe cache themwithin the scene. We use them for sampling reflected rays which, in turn, increases the
chance that we hit the light source. The benefit of these directional distributions is that they are aware of
occlusion in the scene. However, this strategy is usually inferior to next-event estimation provided there
is only one light source in the scene and no occlusion between illuminated surface and the light source.

Yet in production, we have to deal with scenes which often contain many occluded light sources. This
pose a challenge for next-event estimation. To deal with large number of light sources with various geo-
metric configuration and orientation, it is common to use some sort of hierarchical light source cluster-
ing Estevez and Kulla [2018], Fascione et al. [2019] and select a cut with candidate lights from which one
light is sampled. However, these approaches are not aware of occlusion which can be learned per scene
region to guide the light selection. We present two possible occlusion aware solutions to this many-lit
problem in Sec. 8 and Sec. 9. The former one is implemented in Corona, a production renderer oriented
on architecture visualization while the latter one was explored also in the real-time rendering context and
can achieve interactive frame rates.

Yet another issue connected with NEE is the question how many samples we should take per one end
vertex where we estimate the direct lighting. If the estimate is noisy, we would like to increase the number
of samples to amortize the cost of tracing the whole path up to the position of the estimate. On the other
hand, taking the NEE sample can be relatively costly as it usually includes descend through the hierarchy
of lights. So in regions where the direct illumination is dim (or completely occluded), we would like to
decrease the number of samples to bare minimum to save time. This number can even drop below 1 yet
stay above 0 so that we only take NEE sample occasionally. In the same spirit, we can even learn how to
distribute samples between distant lights and area lights.

Statistics needed for optimizing the NEE sample rates can be stored in caches within the scene (parti-
tioning of the scene) which are used for guiding of indirect illumination. Thus, with majority of guiding
solutions, it is possible to amortize the cost associated with search in the cache for the most relevant guid-
ing record. The selected record will have the necessary statistics for sampling both direct and indirect
illumination.
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7.3 Indirect illumination.

Wenow consider illumination due to light scattering at least twice before reaching the camera. While such
illumination appears smooth in the scene, it can be very difficult for path tracer to sample it efficiently. In
essence, this happens due to (a) inefficient directional sampling and (b) sub-optimal path-length sampling.
Both of these culprits can be mitigated by path guiding.

To explain inefficient directional sampling, we will consider a scene with lights close to geometry
causing strong reflections on rather diffuse walls. Because these reflections occupy rather small solid
angle when observed from distance, traditional sampling only occasionally finds the directions where the
strong light is coming from. The reason is that such sampling is based on the surface properties and thus,
for example on diffuse surfaces, spreads samples into a wide solid angle.

There are multiple different path guiding techniques available for directional guiding which learn op-
timal directions for sampling the rays in angular (directional) domain. These include early works on
this topic which based foundation for future exploration Jensen [1995], Lafortune and Willems [1995],
followed by works of Hey and Purgathofer [2002] and Bashford-Rogers et al. [2012]. Recently, more
advanced techniques were introduced by Herholz et al. [2016, 2019], Müller et al. [2017], Vorba et al.
[2014], Simon et al. [2018] that can handle mix of low and high frequency illumination and can be made
practical for production. We discuss the details and differences between these advanced methods in
Sec. 7.10, 10, 11, 12. For completeness, Dahm and Keller [2018] revealed interesting relationship between
guiding and reinforcement learning, although they used the same representation as Jensen [1995] which
does not scale well for complex production scenes. Also Müller et al. [2018] have shown that directional
guiding is even possible using neural networks. However, network training relies on using GPUs and yet,
the method approaches diminishing returns. We discuss the future potential of this method in Sec. 13.

Path sampling can benefit from directional guiding as long as we can efficiently decide whether it
is worth to continue tracing the path or we should rather terminate it and start tracing a new one from
the camera. It is important to guide this decision as it is a key to achieve high performance in simple
scenes where most of the energy is transported over short paths as well as in more complex scenes where
light undergoes many scattering events before reaching the camera. This problem is addressed by guided
Russian roulette and splitting Vorba and Křivánek [2016] (also known as adjoint-driven Russian roulette
and splitting) that we describe in Sec. 7.7.

7.4 Combination of Direct and Indirect Illumination

When we guide unidirectional path tracing in systems with next-event estimation, it is a question what
quantity we should store in our directional distributions. It seems that the answer depends on how well
our next-event estimation can importance sample the direct illumination.

If the next-event estimation is almost perfect and can handle occlusion as well as many-lights in the
scene, the best choice is to simply ignore direct illumination completely and adapt only to indirect illu-
mination. Otherwise, if we include direct illumination, which can be handled well in this example, we
distract guiding from focusing on indirect illumination features since most guiding methods allocate lim-
ited resources (guiding resolution) on angles with high illumination. Thus, in turn, we would introduce
variance into indirect illumination. Even worse, we would also introduce variance into direct illumina-
tion because unidirectional guiding for indirect illumination would be inferior strategy, however, good
enough so that it is not completely down-weighted by MIS²

With guiding improvements to next-event estimation discussed in Sec. 7.2, it may sound that de-
scribed methods almost form the perfect next-event estimation strategy. However, the practical experi-
ence says, that we always find a corner case in production scenes now and then which might be mitigated
if the alternative strategy for sampling direct illumination could step in. Moreover, some shotsmight be il-
luminated by volumetric lights and large emissive particle systems whichmay be challenging for handling
in light hierarchies and may require more specialized methods.

²Multiple importance sampling with balance or power heuristics is known for being sub-optimal. If a perfect strategy is
combined with a moderate one, the noise of the estimator is increased.
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We can see two ways for solving the dilemma whether to include/exclude direct illumination. First,
we can keep separate distributions for each type (one for direct illumination and one for indirect) in the
same spatial region in the scene. This would leave us with two strategies for unidirectional sampling and
one NEE strategy. We might be able to learn the ideal mixing coefficients of all these strategies similarly
to technique described in Sec. 10.5.

Simple solution to this problem is including direct illumination in the distribution but weighted by
MIS weight. If next-event estimation is good strategy for a given direction then unidirectional samples
will be down-weighted and unidirectional guiding can focus on indirect illumination or important direc-
tions that are not sampled well by NEE.

7.5 Caustics.

Caustics are type of indirect illumination that can benefit from directional path guiding. By its nature,
caustics is light cast from a small light source and focused through refraction or by reflection of curved
specular object. Caustic light is notoriously hard for path tracer to sample because light can come through
extremely small solid angles. Quite often, in the production rendering systems, caustic light transport
must be clamped to avoid unreasonable rendering times (Fig. 7.5).

Figure 3: Scenes featuring caustics can look unrealistic when this kind of light transport is completely
omitted (left) which is the default behavior inmany path tracers. In fact, missing caustics around specular
objects can trigger similar feeling as if the regular objects were missing shadows. Some production path
tracers use strong filtering of caustic transport to retain some amount of lost energy (middle). Yet, the
achieved look is still far from fully path traced caustics (right).

However, these interesting effects can add another level of realism (see Fig. 7.5) and thus production
systems usually offer special solutions. For example, eyes of characters (Fig. 1) feature caustics visible
through a refractive surface (so called specular-diffuse-specular transport). This specific case (eyes, water
droplets) can be handled well by manifold exploration Hanika et al. [2015] although this approach can
run into problems on geometry with highly varying curvature or in the presence of occlusion. Another,
more complex option how to render the specular-diffuse-specular transport are photons Georgiev et al.
[2012] (see Sec. 7.9). However, photon mapping needs a high density of photons sampled within the eyes
which is not easy to achieve in scenes of production scale where eyes usually occupy only a tiny fraction
of the scene.

On the other hand, directional path guiding allows to keep the simplicity of path tracer without run-
ning into the pitfalls like, for example, light leaks associated with photons, yet it is capable of rendering
specular-diffuse-specular paths. Still, there are some limitations. A crucial assumption for path guiding
is that light sources have a reasonable size and thus can be hit by unidirectional path tracing. Also di-
rectional path guiding uses approximations to model angular distributions of light so some amount of
energy can turn into moderate fireflies. However, in contrast to using regular path tracing, these fireflies
account for a very small fraction of total energy and can therefore be clamped in practice (Fig. 7.5b,c).
We discuss more on rendering caustics in Sec. 7.9.
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Figure 4: While rendering caustics by regular path tracing is possible in theory, the cost is unacceptable in
practice (left). A convenient solution is extending path tracer by directional path guiding (middle) which
is a general way to aid sampling of the whole range of indirect illumination effects. One problem of path
guiding on this extremely difficult transport is that it generates fireflies. However, these fireflies capture
only low amount of energy and can be clamped in practice without having a substantial impact on the
look (right), leaving a uniform noise that is suitable for de-noising. All images were rendered with 1024
samples per pixel.

7.6 Glossy indirect illumination.

Wecan classifymethods for directional guiding according to their capability of handling surfaces with low
roughness or volumeswith highmean cosine. Ideally, to generate high quality samples, choosing direction
at a scattering event should consider product of incident illumination and BSDF (or phase function in
volumes). Some guiding solutions Herholz et al. [2016, 2019] based on parametric mixtures are designed
to handle glossy and glossy-to-glossy transport (see Sec.11) explicitly. In fact, themethod byHerholz et al.
[2016] is direct extension of themethod byVorba et al. [2014] to improve handling of the glossy transport.
Recently proposed solution Simon et al. [2018] based on keeping full previously sampled paths inherently
adjust to sampling the product distribution (see Sec. 12).

There are multiple options for solutions Müller et al. [2017], Vorba et al. [2014] that do not sample
the product distribution but rather guide based on incident illumination – which is optimal for diffuse
surfaces. Simplest solution is finding a fixed, global, threshold on roughness below which guiding the
samples according to incident illumination is almost always inferior since response of the material or
phase function would always yield almost zero contribution except for a small set of directions. On this
materials we just resort to sampling the material of phase function.

Another option is using sampling-importance-resampling (SIR) Fan [2006] although distributing
samples may take more time as it requires sampling of several candidates first and then a resampling
step. More pressing issue associated with this method is the fact that we cannot evaluate exact probability
of sampling a given direction which is problematic for MIS combination of unidirectional contributions
and next-event estimation.

Last option is learning two sets of distributions in the scene. One set of distributions in the camera
frustum that would learn the product distribution from samples with evaluated BSDF/phase function
and would be used for guiding scattering of primary rays. The other set of distributions would be used
for guiding subsequent bounces same as in the original methods.

Since the method from Müller et al. [2017] represents guiding distributions as quad trees it might be
possible to consider using product trees. For more details refer to Sec. 10.

7.7 Guided Russian Roulette and Splitting

Path sampling can benefit from directional guiding as long as we can efficiently decide whether it is worth
to continue tracing the path or we should rather terminate it and start tracing a new one from the camera.
Traditionally, this decision called Russian roulette has been driven by albedo of surfaces or volumes.

However, scattering light many times in the scene before reaching the camera can result in premature
termination of paths that significantly contribute to the image. As a result, their contribution turns into
strong noise. This issue arises also in scenes with fully path-traced sub-surface scattering when path
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Figure 5: In scenes where light is scatteredmany times before reaching the camera, good importance sam-
pling and thus noise reduction can be achieved by guided (adjoint-driven) Russian roulette and splitting
(ADRRS). Using traditional albedo-driven Russian roulette in path tracing is sub-optimal under these
conditions (left) because paths are either terminated too soon or time is wasted on sampling overly long
paths. Using global knowledge about the scene clearly reduces noise in indirectly lit regions (middle). Di-
rectional path guiding can be naturally combined with ADRRS which results in synergic noise reduction
(right). Image courtesy of Vorba and Křivánek [2016].

emerges from the object and is terminated at the next vertex without being able to connect to a light. On
the other hand, albedo driven termination may result into spending too much time on tracing reflections
between materials with high albedo (white walls, snow, blond hair, white fur, etc.).

To remedy this, Vorba and Křivánek [2016] introduced guided Russian roulette and splitting (also
known as adjoint-driven Russian roulette and splitting) which allows to optimize path termination by
using global knowledge about the scene learned from previous samples (see Fig. 7.7). Moreover, path
guiding can use this knowledge to split the path in important regions which are, in turn, covered by more
samples. Increased efficiency follows from the fact that path splitting amortizes the work spent on tracing
the whole path up to the splitting point.

Themore scattering events along the path the greater benefit the guided Russian roulette and splitting
provides. This is a reason why it is so important for efficient volumetric transport where average path
length is usually high. In Sec. 11, we describe this technique in detail within a full path guiding solution
for volumetric and surface transport. An alternative guiding method which inherently combines Russian
roulette and directional decisions is presented in Sec. 12.

Practical Consideration. Guided Russian roulette and splitting (GRRS) requires two kinds of esti-
mate to work: (a) an estimate of the computed pixel value I and (b) estimates of incoming radiance at each
scattering event (i.e. path vertex) along the sampled path. Essentially, these two quantities are compared
at every scattering event to decide whether the path will be terminated, split, or will continue. It seems
prohibitive that these quantities are not known up front, however, this technique can work with relatively
crude estimates.

There are many options for computing the pixel estimates I. Vorba and Křivánek [2016] used a pre-
computation step to cache estimates of incident radiance in the scene and determined the pixel estimates
I in a gathering step. However, this extends the time to first pixel and thus is not suitable for progressive
rendering which immediately provides a preview of the computed image. As discussed later in Sec. 7.10,
the forward learning guiding methods like for example method by Müller et al. [2017](see Sec. 10) are
inherently progressive because they learn while the image is computed. To avoid increasing the time
to first pixel due to GRRS in guiding methods without pre-computation, we use filtered current pixel
estimates I which are updated on-line as the light transport simulation proceeds. Our filtering, which
provides low-variance estimates, is implemented as a hierarchical sub-sampling of the image and the
estimates are refined up to a pixel level as more paths are traced.
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Obviously one can use even more advanced de-noising methods and consider GPU support if this is
available. It is only important to achieve the pixel estimates fast without claiming too much of computa-
tional resources needed for the rest of the light transport simulation. An important insight is, that pixel
estimates I do not need to be absolutely precise, yet GRRS can provide significant time savings.

Aswementioned above, we also need to have estimates of incident radiance at every point in the scene.
While these can also be only approximations of true values, practical implementation should consider to
start using GRRS only when the estimates are based on sufficient number of samples and have variance
below a reasonable threshold as noted by Vorba and Křivánek [2016].

7.8 Guided Light/Photon Tracing Emission

Using light tracing or photons for rendering caustics in production scenes is often not possible due to the
size of the scene with respect to its portion visible in the camera frustum. Scenes are usually large for vari-
ous reasons, some of them being (a) scenes aremodeled formultiple different shots or (b) camera is flying
through the scene within one shot or (c) just for the case a director would decide to change the camera in
the given shot in later production stages. Moreover, large open environments like for example lakes and
oceans with distant horizons cannot even be made smaller because this would become visible in the im-
age. Note, that this problem with large scenes projects even to bi-directional methods like bi-directional
path tracing Lafortune and Willems [1993], Veach and Guibas [1994], vcm/ups Georgiev et al. [2012],
Hachisuka et al. [2012], or upbp Křivánek et al. [2014] which, in turn, can degrade to rather expensive
path tracers.

The reason why large scenes are prohibitive for photons is that chances of sampling corresponding
important light paths is very small and thus, in turn, their density is low in important places within the
camera frustum. We identify the sampling of light path emission from distant light sources as the major
culprit.

The distant light sources, like sun and sky or HDR environment maps, are usually used to lit open
environments but also interiors through openings and windows. The fundamental property of distant
light sources is that emitted radiance from any direction is constant with respect to every point in the
scene unless the point is in the shadow due to occlusion. Thus, when a light path is emitted, we first need
to decide from what position the path should start and in what direction we should trace the first ray.
Common solution is to first sample a direction as if we sampled distant lights for next-event estimation.
Then the starting position is sampled uniformly within the area that spans the scene bounds and which is
perpendicular to the sampled direction. Furthermore, the position must be outside of the scene bounds
so that every un-occluded point in the scene has a chance to receive the illumination. However, this
conservative strategy becomes sub-optimal quite fast with increasing extent of the scene.

Path Guiding. Instead, at Weta Digital, we use path guiding to learn the optimal sampling distribu-
tion for sampling the position of emitted light paths based on method described by Vorba et al. [2014].
This method is based on keeping a number of 2D guiding distributions for position sampling. Each dis-
tribution is relevant for a compact set of directions while the union of sets form the whole sphere of direc-
tions. In other words, after sampling the initial direction of the emitted light path, we find corresponding
guiding distribution for sampling the starting position.

Each guiding distribution is proportional to the camera importance reflected from the scene within
the corresponding set of directions. In this way, the density of photons near the camera will become high
whereas in places further away or tilted with respect to the camera view-direction will have lower density.
Note, that scene points that are not visible in the image and do not even reflect indirect illumination into
the image do not receive any photons. For bi-directional methods, this could be combined with approach
described recently by Grittmann et al. [2018] which includes MIS weights in the guiding distributions to
detect where photons are not needed due to existence of other more efficient strategies.

For distant light sources, it makes sense to guide also the direction selection of the initial ray based on
the product of camera importance and emitted radiance as described in the originalmethodbyVorba et al.
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[2014]. For example, the scene can be illuminated only by part of the environment while its brightest part
might be actually occluded (imagine interior illuminated through a windowwhen sun is on the other side
of the building).

Extensions. While Vorba et al. [2014] train the guiding distributions for light tracing emission in the
pre-processing step from paths traced from the camera, we have found that it is possible to extend the
guided emission so that the 2Ddistributions are trained on-line from forward samples similarly asMüller et al.
[2017] do for path tracing (see Sec. 7.10 for the details about forward/reverse guiding). However, there is
a problem associated with this approach.

Because we have no a-priory knowledge about the target guiding distribution, we use the classical
uniform sampling for emitting the light paths in the early stages. As a result, first samples that contribute
to the image have usually high variance and in many cases they just become strong fireflies. As guiding
explores the domain based on these first initial non-zero contributions, it starts to provide reasonable low-
variance contributions. Thus we have to deal with the first noisy contributions that can be very difficult
to “average out” from the final image. Note, that for large scenes, the difficulty of sampling the emission
position in light/photon tracer becomes equivalent to sampling caustics due to very small light source in
the path tracer.

To address this issue we run a very short phase when we warm-up the guiding caches by emitting
a batch of initial paths that are not splat into the beauty image. Further, we try to cull the area which
needs to be explored by guiding. A conservative approach would be to take the area given by the scene
(geometry) bounds (as described for the uniform sampling of emission positions at the beginning of this
section). We instead, within the short pre-pass, trace also a batch of paths from the camera which gives
us a point cloud that allows us to determine the actual scene extent. This helps guiding to find non-zero
contributions faster.

Note, that this problem of noisy initial estimates could also be mitigated by weighting contributions
by their inverse variance as described in Sec. 10.3.

7.9 Path Guiding and Advanced Bi-directional Algorithms

As discussed in Sec. 7.3 and 7.5, path guiding allows efficient rendering of directional dependent effects
like caustics or indirect reflections of light sources that are close to geometry using only path tracer. These
are examples of effects that otherwise require more complex bi-directional transport algorithms like vcm
introduced by Georgiev et al. [2012] which combine paths traced from lights and paths from camera.

Bi-directional Drawbacks. Being able to stick to path tracer is suitable for production as path tracer
is themost favored light transport algorithmas described recently byBurley et al. [2018], Christensen et al.
[2018], Fascione et al. [2018], Georgiev et al. [2018], Kulla et al. [2018]. Not only because it is relatively
simple for implementation but it can accommodate many tricks that are difficult or impossible to incor-
porate in bidirectional algorithms. For example, one can completely change shading for indirect illumi-
nation or increase roughness after multiple scattering events. Another example is so call point-of-entry
sub-surface scattering when the volume properties are derived from a texture on the object boundary.
These tricks usually depend on the the path prefix which makes it challenging to handle within strict bi-
directional constraints. When tracing paths from light sources it is not clear what scattering probabilities
one should use unless the path is connected to the camera. Also the path evaluation must be deferred
until the full path is sampled.

Another pressing issue of bi-directional methods is that they usually double the amount of traced
paths per one progression³ and also spend some time on their combination. This is not a problem when
the extra cost is amortized in difficult transport scenarios by significant decrease of noise in each progres-
sion which, in turn, results in faster render thanks to the decreased total number of progressions. How-
ever, the majority of production scenes feature such conditions that many contributions of bi-directional

³By progression we mean a fixed amount of paths usually equal to the number of pixels for both path tracer and light tracer.
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combinations are down-weighted (and thus discarded)Grittmann et al. [2018], meaning that path tracing
is a better choice.

Path Guiding. The natural quesiton is “Can we aid bi-directional algorithms by path guiding to get
faster renders and remedy some of their issues?” Yes, we can and indeed, as we discussed in Sec. 7.8,
thanks to guided emission, it can deliver light paths in front of the camera so that combination of paths,
which is the source of the bi-directional strength, is even possible. Moreover, we can guide all sampling
decisions along each path (both paths from the camera and from light sources). Yet, as shown in the
work by Vorba et al. [2014] it seems that guided path tracing is more or less as efficient as guided bi-
directional algorithms in the challenging scenarios (Fig. 7.9), meaning thatmany paths are redundant and
their contribution is strongly down-weighted byMIS. Because bi-directional algorithms are unnecessarily
computationally heavy inmost production scenes, we also favor path tracing as the default light transport
algorithm.

Figure 6: Time dependence of L1 error for 60 minutes of rendering. These graphs show that guided path
tracer performs almost as well as guided bi-directional methods (bi-directional path tracing – middle,
vertex connection and merging – right) in three different scenes while the performance gap of unguided
methods is substantial. We borrowed the figure from work of Vorba et al. [2014].

However, we found at Weta Digital, that thanks to guiding, we can make bi-directional algorithms
relatively lightweight if we retain only path tracing with next-event estimation and light tracing, which
connects to the camera. We do not interconnect neither merge paths. We use this for shots where caustic
lighting is received by majority of pixels because light tracing with guided emission (see Sec. 7.8) can be
still superior to guided path tracing (see the paragraph Caustics in Sec. 7.1). This is true especially for
caustics coming from very tiny light sources.

7.10 Different Approaches

In previous sections, we classified path guiding methods according to their application within light trans-
port simulation. Here, we would like to stress other aspects by which path guiding methods can differ.

Forward/Reverse Learning. Two early works on directional path guiding by Jensen [1995] and
Lafortune and Willems [1995] set twomain courses. While Jensen [1995] used photons, i.e. paths starting
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from light, to guide sampling of camera paths, Lafortune and Willems [1995] used only camera paths –
both for learning and for rendering. In this text, we use the term reverse for the former since, for learning,
it uses paths traced in the “opposite direction” (light to camera vs. camera to light) to paths that are
actually guided while we use forward for the latter since it uses paths from the “same direction” for both
learning and guiding.

In recent works on directional path guiding for indirect illumination, the reverse path guiding style
was adopted by Herholz et al. [2016, 2019], Vorba et al. [2014] while recently, Dahm and Keller [2018],
Müller et al. [2017], Simon et al. [2018] followed the forward learning course. From production perspec-
tive, there are some clear pros of the forward learning methods: (a) pre-processing stage is minimal and
guiding information is learned on-the-fly with rendered image (friendly to progressive rendering, short
time to first pixel), (b) one does not need to implement tracing of photons, and (c) learned guiding distri-
butions are not affected by possible asymmetry of light transport due to production tricks (see Sec. 7.9).

On the other hand, reverse methods may benefit from inherently good distribution of photons for
effects like caustics provided there is a good emission sampling strategy (see Sec. 7.8). In contrast, forward
methods must provide good exploration strategy for discovered light transport features. To illustrate this,
we consider a caustic path that is revealed only after tracingmany paths from the camera in the early stages
of rendering. Note, that such path cannot be guided if we have no a-priory information. This path will
become a firefly due to its low probability of sampling and forward guiding must ensure that its vicinity
is explored efficiently to learn where to send subsequent paths. If we explore only a small region, we
may not discover important paths with sufficient probability and this will result in more fireflies. Similar
result might have exploring overly large space because again, sampling important paths might have low
probability.

Within this classification, both methods for occlusion aware many-light sampling described in Sec. 8
and 9 belong among forward guiding methods (although the latter also suggests how it can benefit from
photons). The guided Russian roulette and splitting described in Sec. 7.7 can work equally well with both
approaches. While it was originally introduced byVorba and Křivánek [2016] in a reversemethod,Müller et al.
[2017] also applied guided Russian roulette in their forward learning method.

Reverse methods using parametric mixtures (see the next paragraph) are usually based on fitting
distributions by density estimation methods and thus it seems that they cannot be easily turned into for-
ward learning scheme. On the other hand, the weighted Expectation-Maximization algorithm proposed
by Vorba et al. [2014] might be possible to use for forward learning thanks to its ability to weight fitted
samples. Thus, in turn, it could be possible to step aside the density estimation which we, at Weta Digital,
have verified by conducing an early experiments within volumetric guiding (Sec. 11). We refer reader to
Sec. 11.5.1 for more details.

Representation. Parametric mixtures, histograms, adaptive quad trees, full paths.

Caching. Differences in caching schemes. Very important for performance. Various numbers of dis-
tributions, some schemes can adapt to directional changes in the light field. Vast space for improvements.

7.11 Requirements on Successful Guiding Methods

We list the theoretical and practical requirements on good guiding methods such as computational effi-
ciency, low memory overhead, minimal overhead in simple scenes, robustness etc.
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8 Bayesian Inference inManylightSampling
JAROSLAV KŘIVÁNEK, Charles University, Prague/Render Legion

Note

This section is draft. You can find the final version at
http://cgg.mff.cuni.cz/~jirka/path-guiding-in-production/2019/index.html

Complete guiding solution that can stand the load of production scenes needs to adapt both sampling
of indirect and direct illumination. Production scenes often feature tens, hundreds or even thousands of
lights while only varying subsets are visible across the scene. This makes sampling of direct illumina-
tion challenging and unpredictable. If path guiding learns optimal sampling decisions only for indirect
illumination the variance coming from choosing a light source connection can still be inhibitive.

In this part we discuss a recent approach [Vévoda et al., 2018] to sampling many lights based on
Bayesian inference. As explained in the previous section, Bayesian learning is based on taking prior as-
sumptions that are formed by subsequent observations (i.e. sampled paths) that provide evidence about
real statistical properties of a given scene. This Bayesian approach turns out to be advantageous for ro-
bust data-driven learning and applicable to both many-light sampling and indirect illumination path
guiding [Vorba et al., 2014].
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9 GuidingandShadowRays
ALEXANDER KELLER, NVIDIA

At the core of physically based light transport simulation are materials specified by bidirectional scat-
tering distribution functions (BSDF). Given a direction of incidence and a second direction into which
radiance is scattered, these functions determine the fraction of radiance transported for any point of the
scene surface. Besides evaluation, determining a scattering direction given a surface point and a direction
of incidence is the second basic operation that is implemented in modern rendering algorithms. Scat-
tering allows for tracing light transport paths, for example creating photon trajectories starting at light
sources.

Light transport simulation consists of sampling light transport paths and summing up their con-
tribution to the pixels of an image. Using scattering, this is most efficient, if paths are sampled pro-
portional to their probability, which includes to learn where light comes from [Dahm and Keller, 2018,
Keller and Dahm, 2019]. Based on early ideas by Lafortune and Willems [1995] and Jensen [1995], guid-
ing paths has made huge progress recently [Herholz et al., 2016, Müller et al., 2017, Müller et al., 2018,
Zheng and Zwicker, 2018].

However, when connecting endpoints of segments of paths by shadow rays to test their mutual visi-
bility, the evaluation of the BSDF does not consider visibility. Hence images may be noisier when paths
are not sampled proportional to their contribution.

The course notes are based onownwork and almost identicalwork done independently [Mikolajewski,
2018]. It deals with efficient approaches to improve next-event estimation by including information about
visibility in order to make shadow rays much more efficient. After briefly reviewing the principle of im-
portance sampling in Sec. 9.1, we introduce the concept of the partial cumulative distribution function
in Sec. 9.2 and its stochastic interpolation in Sec. 9.2.2. Realizing that a hitpoint of a photon is the end
of a ray that started where light came from, allows one to use photon trajectories to include an informed
guess about visibility and thus to notably reduce noise in image synthesis, which is explored in Sec. 9.3.
The probabilities for next-event estimation may be learned during guided path tracing, as introduced in
Sec. 9.4.

9.1 Importance Sampling

Light transport simulation [Pharr et al., 2016] relies on Monte Carlo [Sobol’, 1991] and quasi-Monte
Carlo methods [Keller, 2013] for approximating integrals, as general closed form solutions are not avail-
able. One important method of improving the efficiency of estimating integrals by averages of samples
of the integrand is importance sampling, which is based on a simple transformation:∫

[0,1)s
f(x)dx =

∫
[0,1)s

f(x)
p(x)
p(x)

dx ≈ 1
N

N−1∑
i=0

f(yi)
p(yi)

Importance sampling would be perfect, if the probability density function p was proportional to the inte-
grand f, However, this would imply that we know the integral already. In practice, we therefore generate
samples {y0, . . . , yN−1} with a distribution as proportional to p as possible.

Asmentioned in the previous section, importance sampling by guiding light transport paths to where
radiance comes from is quite advanced. However, besides selecting scattering directions, simulation effi-
ciencymay be improved by sampling points on light sources and shooting a shadow ray to check, whether
they illuminate a point. Therefore the integral over the hemisphere S2−(x) aligned by the surface normal
in x representing the reflected radiance Lr in a point x in direction ω is transformed to an integral over
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Figure 7: Comparison. Left: Uniform sampling. Right: The effect of resampling importance sampling:
First, 8 samples are generated from a uniform distribution across the light sources. Then a cumulative
distribution function (CDF) is determined using the unoccluded contribution of each of the initial sam-
ples. The actual shadow rays to be shot are determined by resampling the CDF. Unreal Engine demo by
Epic Games.

the surface ∂V of the geometry:

Lr(x, ωr) =

∫
S2
−(x)

Li(x, ω)fr(ωr, x, ω) cos θxdω

=

∫
∂V

V(x, y)Li(x, ω)fr(ωr, x, ω) cos θx
cos θy
|x− y|2

dy (1)

The visibility functionV(x, y) is either one, if both points can see each other and zero if they are occluded.
fr represents the bidirectional scattering distribution function and Li is the incident radiance.

The numerical evaluation of equation (1) is called next-event estimation and has been intensively
investigated, see for example Vévoda and Křivánek [2016] and Vévoda et al. [2018]. The main challenge
of importance sampling is the inclusion of the visibility function V. We therefore briefly review some
fundamental approaches in the following sections before proposing our approach.

9.1.1 Resampling Importance Sampling

Resampling importance sampling is a general concept that can be used in combination with any impor-
tance sampling method. The idea is to initially sample from a first distribution, for example creating
samples uniformly distributed across the surface of the area light sources. Then a cumulative distribution
function (CDF) is determined given a second distribution, for example the unoccluded contribution of
each previous light source sample. The actual shadow rays to be shot then are selected according to this
CDF [Bikker, 2012, Talbot et al., 2005].

A comparison between uniform sampling and resampling importance sampling is shown in Figure
7. While a larger number of initial samples results in a more accurate importance sampling, it comes at
the cost of more evaluations of the second distribution. This can be quite expensive, although no shadow
rays are involved, yet. It is therefore crucial to carefully choose the number of initial samples for the
resampling CDF.

9.1.2 Light Hierarchies

In a pre-processing step a binary tree is built over the emissive geometry in a scene. During rendering, this
tree is probabilistically traversed depending on local properties like for example position and solid angle.
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Reaching a leaf, a light source is selected either by uniformly sampling or by sampling a pre-computed
cumulative distribution function (CDF).

While light hierarchies are standard in industry [Estevez and Kulla, 2018, 2017, Keller et al., 2017]
and even perform in realtime [Moreau and Clarberg, 2019], they lack the inclusion of actual visibility
information, which may dramatically decrease their efficiency in certain situations.

9.1.3 Including Visibility

Already Ward in his RADIANCE rendering system [Ward, 1991, 1994] used visibility information to
reduce variance: For each light source the number of successful shadow rays and the total number of
shadow rays were tracked and their ratio served as an approximation of average visibility.

Then Jensen and Christensen [1995] traced rays straight through objects to create shadow photons
to indicate the lack of illumination. As the number of shadow photons to deposit depends on the depth
complexity of the scene, the method became less practical with more complex geometry.

When querying photons in a photon map, the origins of the photons indicate locations where light
may be coming from. This idea has been used by Keller and Wald [2000]: Shadow rays were traced to
photon origins and for consistency purposes one ray has been traced to a randomly selected light source
not represented by the queried photons. In a similar fashion, probabilistic connections for bidirectional
path tracing [Popov et al., 2015] determine probability distribution functions by subsampling all possible
connections between light and camera path segments. Then the probability density functions closest to
the point to be shaded are interpolated and used to select the actual shadow rays to be shot.

9.2 Partial Cumulative Distribution Functions

In order to savememory, we take advantage of the fact that out of themany light sources thatmay influence
a point to be shaded often only a small number has a probability that is vastly different fromuniform. Then
the probability of the i-th light source can be written as

pi :=

{
(1− b) · qi + b · 1n for i ∈ I
b · 1n for i ̸∈ I,

(2)

where the index set I := {i1, . . . , ik} ⊆ {1, . . . , n} is a subset of the set of all indices of light sources. Note
that

∑n
i=1 pi = 1.

A partial cumulative distribution function (CDF) Qk :=
∑k

j=1 qij now only stores the non-uniform
part of the distribution. The uniform part is implicitly given by the constant b ∈ [0, 1].

In order to sample a light source index, with probability 1 − b the partial CDF is used for selection,
while with probability b any of the n light sources is selected uniformly. For a survey of efficient parallel
algorithms to sample a CDF, see Binder and Keller [2019].

In the subsequent sections, we explain how to store partial CDFs in a scene, how to determine the
index set I, and how to efficiently compute the probabilities qi.

9.2.1 Multiple Importance Sampling

Instead of sampling the uniform part of a partial cumulative distribution function, for example, a light
hierarchy can be used to improve results. We combine both methods using multiple importance sam-
pling. Each sample is weighted by the inverse of the sum of the probability of creating it with the partial
cumulative distribution function and the probability of creating it using the light hierarchy. Note that
these weights replace the constant b in equation 2, which otherwise needs to be a fixed small value or may
be learned.

SIGGRAPH 2019 Course Notes: Path Guiding in Production Page 29 / 79



PATH GUIDING IN PRODUCTION

Algorithm 1: Computation of the two hashes used for lookup. Note that the arguments of a hash function,
which form the descriptor, may be extended to refine clustering, see Binder et al. [2019].
Input: Location x of the vertex, the normal n, the position of the camera pcam, and the user-selected scale s.
Output: Hash i to determine the position in the hash table and hash v for verification.

1 l← level_of_detail(|pcam − x|)
2 x′ ← x+ jitter(n) · s · 2l
3 l′ ← level_of_detail(|pcam − x′|)
4 x̃←

⌊
x′

s·2l′

⌋
5 i← hash(x̃, . . .)
6 v← hash2(x̃, n, . . .)

9.2.2 Hashing and Stochastic Interpolation

In order to locally adapt the partial cumulative distribution functions, space may be partitioned into a
uniform grid of voxels or by a kd-tree. Even more efficient, we may use the hashing scheme introduced
by Binder et al. [2019]: We select a hash table size proportional to the number of pixels on the screen,
where each hash table entry stores one partial cumulative distribution function. The code fragment in
algorithm 1 illustrates how to look up a voxel given a location x in space. Jittering the lookup position
replaces an explicit blending of distributions and can be considered stochastic interpolation. For more
detail, we refer to Binder et al. [2019].

9.3 Photon-Guided Shadow Rays

For next-event estimation, we trace primary photons (i.e. light path segments of length 1 starting on
light sources) and store these in a spatial data structure (also see Mikolajewski [2018]). For each voxel in
this data structure a CDF is built over the contributions of the photons as seen from the camera. When
computing the actual image, camera paths are traced and at each path vertex an explicit connection to a
light source is established. To select a light source, the CDF of the voxel containing the vertex is sampled,
which in turn means that a light source is selected proportional to its contribution including visibility. In
addition we combined our method with a light hierarchy using multiple importance sampling to over-
come the problem of low photon density regions. This way our combined solution takes the best of both
worlds and never performs worse than the light hierarchy.

Thebenefits of the technique are shown in Fig. 8 andFig. 9. Themodel shown in Fig. 10 contains 10624
area light sources and is rendered using 4 paths of length 4 per pixel. While a light hierarchy still suffers
from high variance due to light selection without taking into account visibility, our method may reduce
this source of variance. In addition ourmethod is faster than probabilistically traversing a hierarchy. With
a budget of 7x4 rays per pixel, our method runs at 24FPS in a pure software GPU implementation. Note
that the remaining noise is very uniform in nature and hence very amenable to filtering: Fig. 10 includes
a combination of the sampling technique with path space filtering [Binder et al., 2019, Keller et al., 2016].

9.4 Learning which Shadow Rays to Shoot

Instead of using photons, tracing a small number of paths across the image before rendering is sufficient to
estimate the average contributions of the light sources across the image [Wald et al., 2003]. Normalizing
the contributions yields a probability density for sampling during rendering. Even neural networks can
be used to learn probabilities for next-event estimation [Keller and Dahm, 2019].

9.5 Conclusion

Next-event estimation helps to increase the efficiency of light transport simulation, especially, if impor-
tance sampling includes information about the actual visibility. We proposed the concept of a hash table
storing partial cumulative distribution functions. Accessing the data structure by stochastic interpolation
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(a) Uniform sampling

(b) Light hierarchy

(c) Visibility-guided importance sampling

Figure 8: Method comparison at 16 paths per pixel.
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Figure 9: Algorithm comparison for different scenes. The zoomed areas have been rendered with 2 paths
of length 3 per pixel and 4 shadow rays at each bounce. For each scene there are three zoomed areas. Top:
Uniformly selecting one light source out of many. Middle: A light hierarchy. Bottom: Visibility-guided
importance sampling. Unreal Engine demo by Epic Games.
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Figure 10: Comparison of a light hierarchy (top), photon-based next event estimation (middle), and a
path space filtered version of the photon-based next-event estimation (bottom) at an identical budget of
4 paths of length 4 per pixel. The San Miguel model contains 10624 area light sources.
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helps both temporal stability and uniform noise that is very amenable to filtering. The actual probabilities
are inferred by either light paths or camera paths. The scheme is simple to implement and parallelize. It
is straightforward to apply to algorithms using virtual point light sources [Keller, 1997].

While the scheme is consistent and unbiased and hence always converges to the desired solution, in-
efficiencies may be caused by the spatial partitioning. While a fine partitioning can capture contributions
precisely, a coarse partitioning will capture contributions much faster. These are hence competing goals.

An interesting avenue for future research is to use stochastic hashing as introduced by Hachisuka
[2011] and weighted reservoir sampling to avoid the construction of a variable size cumulative distribu-
tion function.
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10 “PracticalPathGuiding” inProduction
THOMAS MÜLLER, NVIDIA§

Path Tracing + extended PPG

Figure 11: The “Practical Path Guiding” algorithm with our extensions reduces noise of indirect illumi-
nation in a scene lit and rendered with production assets. ©Walt Disney Animation Studios

10.1 Introduction

What is a “Practical” Path-Guiding Algorithm? One of the main selling points of path guiding
is its ability to simulate complex light transport using a simple, low-overhead, unidirectional algorithm.
This is very benefitial for production environments, because unidirectional tracing is preferred over the
bidirectional methods that are typically required to simulate similar levels of complexity. However, pro-
duction rendering does not always need the ability to handle complicated illumination. Many scenes
encountered in production actually have quite simple light transport—in part because artists are accus-
tomed to coping with the limitations of unidirectional tracing—which challenges the practicality of path
guiding: a truly practical production-path-guiding algorithm must not only robustly handle difficult illu-
mination, but it must also remain performant under simple illumination without introducing additional
noise.

How Practical is “Practical Path Guiding”? The “Practical Path Guiding” (PPG) algorithm
[Müller et al., 2017] was conceived with the goal of addressing several formerly existing practicality is-
sues. It succeeded on some fronts, such as eliminating an expensive precomputation by instead learning
to guide on-line during rendering from unidirectional camera paths (concurrently with Dahm and Keller
[2018]), but on other fronts PPG was still limited: for example, its spatio-directional data structure—the
SD-tree—had trouble adapting to local, high-frequency illumination, the algorithm discarded up to half
of the total number of samples, and PPG blindly performed incident-radiance guiding everywhere, even
in situations where this did not make sense.

Although these limitations did not prevent PPG from performing well under difficult illumination,
they made its performance worse than that of unguided path tracing in simpler settings. Because of this,
PPG clearly needed more work.

§The presented work was conducted while the author was employed at ETH Zürich and Disney Research.
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Making “Practical Path Guiding” More Practical. We came up with three extensions to the
original PPG algorithm that address some of the aforementioned limitations. These extensions are

1. an inverse-variance-weighted sample combination scheme that uses most samples as opposed to
discarding up to half of them,

2. spatio-directional filtering for improving the quality and robustness of the SD-tree, and
3. on-line learning of the selection probability between guiding and BSDF sampling to avoid intro-

ducing extra noise in situations where incident-radiance guiding is suboptimal.

While there is still additional room for improvement—we do not outperform unguided path tracing in
all situations—our extensions helped in making PPG a useful tool for movie production within Disney’s
Hyperion renderer [Burley et al., 2018].

In the following, we will briefly describe the original PPG algorithm and then introduce each of our
extensions in detail. After that, we will discuss a number of subtle but important implementation details
and conclude by stating remaining issues and open problems.

10.2 The PPG Algorithm

The ultimate goal of path guiding is to importance sample the scattering integral

Ls(x, ωo) =

∫
S
Li(x, ωi) fs(x, ωi, ωo) cos γi dωi , (3)

where Li is the spatio-directional incident radiance, fs is the BSDF, and cos γi is the foreshortening term.
The PPG algorithm learns an approximation of incident radiance, denoted L̃i, and subsequently samples
ωi proportional to this approximation. Since this approach neglects learning the BSDF and the fore-
shortening term, it is paramount to combine it with BSDF sampling via multiple importance sampling
(MIS) [Veach and Guibas, 1995] to attain low variance.

At PPG’s core is an iterative learning scheme: the rendering process is split into M distinct passes,
called “iterations”, each learning a new, more powerful incident-radiance approximation L̃ki while being
guided by the approximation that was learned in the preceeding iteration L̃k−1

i . This scheme not only
allows guiding early on in the rendering process—as soon as the first iteration finishes—but it also avoids
an expensive precomputation that would stand in the way of fast artist workflows.

10.2.1 The SD-tree for Storing Incident Radiance

PPG approximates incident radiance as a piecewise-constant function with adaptive resolution that is
represented by a spatio-directional tree (SD-tree; see Figure 12). The SD-tree has an upper part—a binary
tree that subdivides the spatial domain—and a lower part—a quadtree that subdivides the directional
domain. This split into two parts captures the notion that the spatial and directional domain are used in
fundamentally different ways for guiding: given a position in space the goal is to sample a direction. In
other words, the guiding probability distribution is conditioned on space and normalized across directions.

Recording Radiance. During path tracing, the current SD-tree L̃ki is populated with radiance esti-
mates from paths that are guided by L̃k−1

i as follows. Whenever a path is completed (e.g. via next-event
estimation), the radiance arriving at each of its vertices v is recorded in the SD-tree leaf that contains the
vertex position xv and direction ωv. This amounts to nearest-neighbor filtering of the samples as they
are splatted into the tree. One of our extensions (Section 10.4) replaces this nearest-neighbor filter with
a more sophisticated volume-overlap filter that significantly improves the approximation quality of the
SD-tree.
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(a) Spatial binary tree

x

y

z

(b) Directional quadtree

φ

cos θ

Figure 12: The SD-tree subdivides space using an adaptive binary tree (a) that alternates between split-
ting the x, y, and z axes in half. Each leaf of the spatial tree contains a quadtree (b), which approximates
the incident radiance as an adaptively refined piecewise-constant function in cylindrical world-space co-
ordinates (cos θ, φ) with cos θ = ωz and φ = atan2(ωy, ωx). Illustration from Müller et al. [2017] with
additional labels.

Sampling. When using the SD-tree from the previous iteration L̃k−1
i for importance sampling of ωi

at an intersected location x, its spatial component is traversed to the leaf containing x; then the quadtree
contained in the leaf is sampled using hierarchical sample warping [McCool and Harwood, 1997]. We
provide pseudocode for sampling and for evaluating the corresponding PDF in Algorithm 2.

As mentioned before, to achieve low variance it is essential to combine SD-tree sampling with BSDF
sampling via MIS: PPG probabilistically selects either SD-tree or BSDF sampling with a fixed selection
probability of 50%. To reduce variance even further, in Section 10.5, we replace the 50% probability
with a spatially varying value that is optimized jointly with the SD-tree during rendering based on the
optimization of Müller et al. [2018].

Subdivision. At the end of each iteration, the newly populated SD-tree L̃ki is used to determine the
subdivision of the next SD-tree L̃k+1

i in such a way that all spatial leaf nodes encounter a roughly equal
number of path vertices during rendering, and such that all directional leaf nodes of a given quadtree
contain roughly the same amount of flux. We omit additional details of this subdivision process, because
they are not relevant for the remainder of the text; we refer to Müller et al. [2017] and our public imple-
mentation for more details.

10.2.2 Iterative Learning and Rendering

The rendering algorithm is divided intoM iterations, each of which produces an image Ik and an SD-tree
L̃ki . Since the early iterations are guided only by coarse, inaccurate SD-trees, they typically result in much
noisier images than the later iterations. Naïvely averaging the images produced by each iteration could
thus lead to more noise in the final image than simply discarding the images from early iterations. This
motivates PPG’s iteration scheme: rather than allocating an equal number of samples to each iteration,
PPG doubles the number of samples of each iteration. The total number of samples is thus N = 1 + 2 +
· · · + 2M−1 = 2M − 1, which is approximately twice the number of samples of the final iteration. The
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Algorithm 2: Sampling and PDF evaluation of the directional quadtree.
1 function sampleQuadtree(node)
2 if isLeaf(node) then
3 return cylindricalToDirection(uniformRandomPositionIn(node))
4 else
5 childNode← sampleChildByEnergy(node)
6 return sampleQuadtree(childNode)

7 function pdfQuadtree(node, ωi)
8 if isLeaf(node) then
9 return 1/4π

10 else
11 childNode← getChild(node, directionToCylindrical(ωi))
12 β ← 4 · getFlux(childNode) / getFlux(node)
13 return β · pdfQuadtree(childNode, ωi)

algorithm then discards the images produced by all but the final iteration, preventing initial high-variance
samples from increasing overall noise while limiting the “wasted” computation to at most half of the total
sample count.⁵

While this scheme increases robustness in the worst cases, it is clearly undesirable to throw away
half of the computation when the initial iterations already resulted in small variance. Müller et al. [2017]
address this problem by adaptively assigning a larger proportion of samples to the final iteration, thereby
discarding a smaller proportion, but the heuristic they use for this purpose is brittle in practice. In the
next section, we explain an alterative: a principled weighting scheme for combining almost all samples in
a robust manner.

10.3 Extension 1: Inverse-Variance-Weighted Sample Combination

Our first extension allows robustly combining themajority of samples by using an inverse-variance-based
weighting scheme that acts on the images I1, I2, . . . , IM produced in each iteration.

Theoretically Optimal Sample Combination. Because the images I1, I2, . . . , IM are indepen-
dent random variables, the optimal per-pixel combination weights—i.e. those that result in the least com-
bined variance—are proportional to the inverse pixel variance [Graybill and Deal, 1959]

I(p) =
1∑M

i=1 wk(p)

M∑
i=1

wk(p)Ik(p) , (4)

wk(p) =
1

V[Ik(p)]
, (5)

where I(p) is the combined pixel value of pixel p.

Robust Sample Combination. Unfortunately, it is unrealistic to assume accurate knowledge of
the variance of each individual pixel, which makes the aforementioned optimal scheme difficult to apply.
While it is possible to estimate the pixel variance from the samples themselves, such estimates often are
highly inaccurate and would therefore lead to suboptimal weights if they were used. But even worse:
estimating the variance from the samples introduces correlation between the image Ik and the variance-
estimate-based weights wk(p), ultimately leading to bias.

We want to reduce this bias and increase stability while retaining the core idea behind the inverse-
variance sample combination. To this end, we propose to average the per-pixel variance estimates over

⁵The algorithm can also handle non-power-of-two sample counts by lengthening the last iteration.
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Figure 13: Combining the images produced by each iteration weighted by their mean pixel variance
reduces the number of “wasted” samples and thereby slightly subdues noise. We quantify the noise as
mean absolute percentage error averaged over each image.

the image plane

w̄k =
∑
p

wk(p) , (6)

leading to the less biased but also less optimal whole-image weighting scheme

I =
1∑M

i=1 w̄k

M∑
i=1

w̄kIk . (7)

In our experiments, we were unable to actually observe any bias using this scheme, both visually and
numerically. Furthermore, the resulting images consistently had less noise compared to images produced
by the original PPG algorithm; we show two examples in Figure 13.

Importantly, the proposed weighting scheme is consistent. As rendering progresses, the variance esti-
mate is built using an increasing number of samples, approaching the true variance of the pixel value. This
higher accuracy of the variance estimate leads to vanishing correlation between the weights and the pixel
values—because the true variance does not depend on any specific samples—and thereby to vanishing
bias.

Lastly, to further improve robustness, we only combine the last 4 images. While this amounts to
always discarding slightly fewer than the first 6.25% of the samples, these initial samples are the noisiest
and can—in the most difficult cases—otherwise cause unstable weights.

10.4 Extension 2: Spatio-directional Splatting into the SD-Tree

While testing the SD-tree on a large number of scenes, we observed distracting artifacts under spatio-
directionally narrow illumination. In Figure 14, we created a contrived situation that demonstrates the
problem: we render a CORNELL BOX that is illuminated by a tiny quad light with disabled next-event
estimation. Although PPG dramatically improves overall variance over an unguided path tracer (left),
residual noise manifests non-uniformly along the spatial structure of the SD-tree (middle).
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Path Tracing without NEE + PPG + spatio-directional filtering

Figure 14: Improved handling of narrow illumination by spatio-directional filtering of radiance estimates
that are splatted into the SD-tree. We illustrate a contrived situation: a small light source that is not sam-
pled with next-event estimation (NEE). Although PPG (middle) dramatically improves overall variance
compared to an unguided path tracer (left), residual noise is distributed non-uniformly along the spatial
structure of the SD-tree, which is visually unpleasing. Spatio-directional filtering (right) addresses the
structured noise by distributing it evenly across the scene and at the same time reducing it overall.

These artifacts are primarily caused by three problems of the SD-tree: first, the spatial subdivision
scheme assumes that splitting a node in half causes the newly created nodes to receive a roughly equal
number of samples, which is not the case when path vertices are distributed anisotropically, e.g. along geo-
metric edges. Second, even if the path vertices were evenly distributed across spatial leaf nodes, their sam-
ple variance is disregarded by the algorithm. And lastly, during path tracing, incident radiance estimates
at path vertices are recorded within their nearest spatial leaves, which causes the learned approximation
to be better in the center of nodes than at their edges, leading to visible darkening at leaf boundaries.

All the above problems result in undesired non-uniform learning of the SD-tree, giving rise to the
artifacts in Figure 14 (middle). A popular and effective approach to mitigate such non-uniformity is
filtering. We therefore introduce a spatio-directional filter to the splatting of radiance estimates into the
SD-tree: instead of recording radiance estimates ⟨Li⟩ from vertices v within the leaf node that contains
the vertex position xv and direction ωv, we record ⟨Li⟩ within those leaf nodes that fall into a spatial
neighborhood around xv and a directional neighborhood around ωv.

More concretely, given ⟨Li⟩ at a vertex v, we begin by traversing the spatial tree to obtain the spatial
footprint and corresponding volumeV of the leaf containing xv; this footprint determines the filter radius
and thereby the size of the spatial neighborhood. We then traverse the spatial tree again, this time visit-
ing each node that has non-zero volume overlap with the spatial footprint from before, centered around
xv. For each spatial leaf with non-zero volume overlap Vo that we find this way, we record the radiance
estimate weighted by the fraction of overlapped volume ⟨Li⟩ · Vo/V.

Directional filtering works analogously, only that we perform area-based filtering over the cylindrical
domain as opposed to spatial filtering over space.

Stochastic Filtering. When implemented as described above, the filtering operation comes with
significant computational cost. This cost can be mostly avoided at the expense of slightly worse quality by
replacing the deterministic filtering that traverses entire sub-trees with stochastic filtering that traverses
only towards a single leaf: after obtaining the spatial footprint, the position xv is jittered (i.e. positioned
uniformly at random) within the footprint’s volume—again, centered around xv—and then recorded in
the SD-tree as done in the original algorithm without weighting the radiance by Vo/V.

To find the sweet-spot between quality and computational cost, it is important to consider the com-
pounding effect of enabling deterministic spatial and directional filtering at the same time: since deter-
ministic spatial filtering increases the number of visited quadtrees (from one to many) and directional
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Path Tracing + ext. PPG + learned prob. Reference
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Figure 15: Learning the selection probability of multiple importance sampling on top of our other ex-
tensions reduces noise in difficult glossy light transport (top) and prevents path guiding from producing
much worse results in places that are simple to render using BSDF sampling alone (bottom). We use 1024
samples per pixel and we quantify noise using mean absolute percentage error averaged over each image.

filtering increases the number of visited leaf quads for each visited quadtree (again, from one to many),
the total computational cost is roughly proportional to the product of the spatial filtering overhead and
the directional filtering overhead. It follows, that negating the overhead via stochastic filtering on only
one of the two filtering operations provides most of the possible speedup.

Additionally, since spatial filtering operates on 3 dimensions whereas directional filtering operates
only on 2, the overhead caused by spatial filtering is bigger.

Because of these two reasons, we perform spatial filtering stochastically and use deterministic filter-
ing only in the directional domain. The computational overhead of this combined approach over vanilla
PPG is around 20% in a Mitsuba-rendered CORNELL BOX and below 10% in Hyperion-rendered produc-
tion scenes. The smaller overhead in Hyperion is a consequence of more computation being devoted to
rendering significantly more complex scenes.

Subdivision Criterion. The original PPG algorithm subdivides spatial leaf nodes when they receive
more than c = 12000 · 2k/2 samples. Due to the increased robustness from filtering, we are able to reduce
this number to c = 4000 · 2k/2, thereby leading to a finer subdivision and therefore not only amore robust
but also a more fine-grained fit; see Figure 14.

10.5 Extension 3: Optimization of MIS Selection Probability

Our third extension aims at on-line learning of the multiple-importance-sampling selection probability
between SD-tree and BSDF sampling such that variance is minimized. This addresses the problem of
overusing the SD-tree on glossy surfaces and when it approximates incident radiance poorly. We demon-
strate the benefits of this extension in Figure 15.

Objective Definition. Recall that in PPG, radiance sampling is combined with BSDF sampling using
the one-sample MIS model [Veach and Guibas, 1995]. Mathematically, this amounts to sampling accord-
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ing to a linear combination of the SD-tree PDF q ∝ L̃i and the BSDF PDF pfs ∝ fs

q̂(ωi|x, ωo; α) = α · pfs(ωi|x, ωo) +
(
1− α

)
· q(ωi|x) , (8)

where α is the selection probability that determines how frequently each of the two strategies is sampled
from. A value of 0 amounts to always sampling from the SD-tree, whereas a value of 1 corresponds to
always using BSDF sampling.

Many radiance-based guiding approaches use a fixed value of α = 0.5 [Müller et al., 2017, Vorba et al.,
2014], whereas others that learn the product are typically more aggressive: Herholz et al. [2018, 2016] use
α = 0.1. However, it would be better to let α vary spatially to account for the fact that BSDF sampling
may be more suitable in some scene regions, whereas guiding may be more appropriate in others.

With thismotivation inmind, our objective is to replace the fixed selection probability αwith a learned
function α(x). To derive a learning algorithm for α(x), we begin by formalizing the desired form that we
would like the combined PDF q̂ to take.

Zero variance can only be attained when sampling proportional to the product of incident radiance
and the BSDF, i.e. according to the “ideal” PDF p(ωi|x, ωo) ∝ Li(x, ωi) fs(x, ωi) cos γi. Although it is
impossible to perfectlymatch the ideal PDF simply by varying α(x), our goal is to optimize α(x) such that
the combined PDF q̂ at least approximates the ideal PDF p as closely as possible.

Since the goal of approximating p(ωi|x, ωo) with q̂(ωi|x, ωo) can be accomplished independently for
any spatio-directional coordinate (x, ωo), we will omit x and ωo from the following derivations. The
objective is then to approximate p(ωi) with q̂(ωi; α) = α · pfs(ωi) + (1 − α) · q(ωi) by varying α. We
can formalize this as an optimization problem: we try to minimize a suitably chosen distance D(p ∥ q̂; α)
between the PDFs p and q̂, referred to as “objective function”. The optimal selection probability is then
the one that minimizes the objective function

α̂ = argmin
α∈[0,1]

D(p ∥ q̂; α) . (9)

Choice of Objective Function. Ideally, we would set the objective function D to the Monte Carlo
variance, such that the above equation directly corresponds tominimizing variance. Such an optimization
is actually feasible, but it is numerically unstable which leads to worse results compared to alternative
objectives [Müller et al., 2018]. We therefore use another, more numerically stable function to capture
the difference between p and q̂: the Kullback-Leibler (KL) divergence.

The KL divergence between the ideal PDF p and the learned PDF q̂ is defined as

DKL(p ∥ q̂; α) =
∫
S
p(ωi) log

p(ωi)

q̂(ωi; α)
dωi . (10)

It is a good surrogate for the variance, because—like the variance—it attains a value of 0 if and only if
p = q̂ and because it approaches infinity as q̂ undersamples the integrand, i.e. when q̂(ωi; α) approaches
zero for directions where p(ωi) > 0.

10.5.1 Minimizing the Kullback-Leibler Divergence

Müller et al. [2018] showed that the selection probability α can be optimized such that the KL divergence
DKL(p ∥ q̂; α) is minimized when α is the output of a neural network. In this section, we use an adapted
approach that does the same without involving a neural network.

Weminimize theKLdivergence by setting its gradient to zero. Ideally, wewould do this in closed form,
which is unfortunately not possible because of the difficult integral. Such difficult minimization problems
are well studied in the field of machine learning and are often addressed using algorithms that build on
“stochastic gradient descent”. One of the most successful of such approaches is “Adam” [Kingma and Ba,
2014], which is remarkably simple to implement. For this reason, and for another reason that we will
mention shortly, we use Adam to optimize the selection probability α.
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The Adam algorithm takes stochastic estimates of the “loss gradient” (in our case: the gradient of the
KL divergence) as input and is guaranteed to converge to a (locally) optimal value if these estimates are
unbiased. Fortunately, it is possible to obtain unbiased KL-divergence gradient estimates: Müller et al.
[2018] showed, that the gradient of the KL divergence can be written as an expectation over samples
drawn from an arbitrary PDF qs.⁶

∇αDKL(p ∥ q̂; α) = E
ωi∼qs

[
− p(ωi)

qs(ωi)
∇α log q̂(ωi; α)

]
, (11)

which yields the desired unbiased gradient as the inner part of the above expectation for directions ωi
drawn from qs.

Evaluating this unbiased gradient is difficult, becausewe cannot evaluate the ideal PDF p(ωi) in closed
form. We can, however, replace the ideal PDF with an unnormalized unbiased estimate of it: the product
of incident radiance, the BSDF, and the foreshortening term. This replacement introduces a constant
factor but otherwise leaves the unbiasedness of the gradient intact because of the linearity of expectations.
Slightly abusing notation and denoting ⟨X⟩ as an unbiased estimate of X, we have

c · ⟨∇αDKL(p ∥ q̂; α)⟩ = −
⟨Li(ωi)⟩ fs(ωi) cos γi

qs(ωi)
∇α log q̂(ωi; α) . (12)

Here lies the second reason behind our choice of using the Adamoptimizer: Adam automatically compen-
sates for the constant factor c, so we ignore the factor and express the gradient only up to proportionality.

We can further expand the gradient estimate by applying the chain rule, finally leading to an expres-
sion that can be evaluated within a renderer

⟨∇αDKL(p ∥ q̂; α)⟩ ∝ −
⟨Li(ωi)⟩ fs(ωi) cos γi

qs(ωi)
∇α log q̂(ωi; α)

= −
⟨Li(ωi)⟩ fs(ωi) cos γi

qs(ωi)

∇α q̂(ωi; α)
q̂(ωi; α)

= −
⟨Li(ωi)⟩ fs(ωi) cos γi

qs(ωi)

pfs(ωi)− q(ωi)

q̂(ωi; α)
. (13)
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Figure 16: Logistic sigmoid.

It may be tempting to directly feed this gradient into the Adam algo-
rithm to optimize the selection probability α, but there is a remaining
problem we must solve before we can do so: the selection probability is
only valid in the range [0, 1], but the above optimization is unaware of
this constraint. The optimization could therefore produce invalid prob-
abilities outside of [0, 1]. We enforce probabilities that lie within [0, 1]
by modeling α in terms of an auxiliary “latent” variable θ ∈ R that can
take any real value without constraint, using the logistic sigmoid func-
tion σ : R→ [0, 1]

α(θ) ≡ σ(θ) =
1

1 + e−θ . (14)

Since the sigmoid enforces valid probabilities α, we can optimize θ using Adam without worrying about
the range of α. To perform this optimization, we need an unbiased gradient estimate w.r.t. θ instead of α,
which can be obtained using the chain rule

⟨∇θDKL(p ∥ q̂; α)⟩ = ⟨∇αDKL(p ∥ q̂; α)⟩ · ∇θ α(θ)
= ⟨∇αDKL(p ∥ q̂; α)⟩ · α(θ)

(
1− α(θ)

)
∝ −
⟨Li(ωi)⟩ fs(ωi) cos γi

qs(ωi)

pfs(ωi)− q(ωi)

q̂(ωi; α)
α(θ)

(
1− α(θ)

)
. (15)

⁶In practice, qs is chosen to equal q̂, but implementation details of multithreaded optimization necessitate their distinction.
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Algorithm 3: Optimization of the MIS selection probability. One MIS optimization step is executed whenever
a radiance estimate is splatted into a spatial leaf of the SD-tree.

1 class SpatialLeaf()
2 t,m, v, θ ← 0 // Initialize state
3 β1 ← 0.9, β2 ← 0.999, ε ← 10−8, learningRate← 0.01, regularization← 0.01 // Hyperparameters
4 function adamStep(∇θ)
5 t← t+ 1 // Increment iteration counter

6 l← learningRate ·
√

1− βt2/(1− βt1) // Compute de-biased learning rate

7 m← β1 ·m+ (1− β1) · ∇θ // Update first moment
8 v← β2 · v+ (1− β2) · ∇θ · ∇θ // Update second moment
9 θ ← θ − l ·m/(

√
v+ ε) // Update parameter

10 function misOptimizationStep(x, ωi, ωo, radianceEstimate, samplePdf)
11 productEstimate← radianceEstimate · fs(ωi) cos γi
12 bsdfPdf← pfs(ωi|ωo, x)
13 learnedPdf← isDiscrete(fs(ωi)) ? 0 : q(ωi|x)
14 spin lock (this) // Ensure θ is only optimized by one thread at a time
15 α ← selectionProbability()
16 combinedPdf← α · bsdfPdf + (1− α) · learnedPdf // Equation 8
17 ∇α ← −productEstimate · (bsdfPdf− learnedPdf)/(samplePdf · combinedPdf) // Equation 13
18 ∇θ ← ∇α · α(1− α) // Chain rule
19 regGradient← regularization · θ // L2 regularization to avoid sigmoid saturation
20 adamStep(∇θ + regGradient)

21 function selectionProbability() // Called by the path tracer to use the learned probability
22 return 1/(1 + e−θ) // Sigmoid as in Equation 14

10.5.2 Integration of MIS Optimization into PPG

In this section, we describe how we implemented the selection-probability optimization using Adam
within the PPG algorithm.

Spatial Discretization. Our goal is to optimize the selection probability α spatially and jointly with
the learning of the SD-tree. To this end, we utilize the spatial subdivision of the SD-tree: in each spatial
leaf node, we not only store a directional quadtree, but also the latent variable θ controlling the selection
probability α. During rendering, whenever we splat a radiance estimate into a spatial leaf node, we not
only record it within the corresponding quadtree, but we also execute an Adam optimization step.

Multi-Threading. The gradient computation and Adam optimization are not thread-safe, so mutual
exclusivity must be guaranteed when two threads attempt to perform an optimization step within the
same spatial leaf concurrenty. Fortunately, such thread collisions are rare, because the spatial binary tree
has a resolution that approximately matches the spatial density of path vertices. We are therefore able to
use an inexpensive spin lock, with which we observed near-perfect linear performance scaling up to 48
threads, which is the maximum number we could test on.

Regularization. Recall, that we express the selection probability as the sigmoid of a latent variable
α(θ) ≡ σ(θ). This sigmoid levels off as θ approaches positive or negative infinity (see Figure 16), i.e. its
gradient approaches zero. Unfortunately, small gradients make gradient-based optimizers such as Adam
less effective, which is known in machine learning as the “vanishing-gradient” problem.

We limit the vanishing-gradient problem by introducing L2 regularization to our latent variable θ,
which “encourages” the optimization to prefer values of θ that are closer to zero, i.e. values of α that are
closer to 0.5. This amounts tomodifying our objective function (theKL divergence) to include an additive
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term λθ2, where λ controls the strength of the regularization. The modified gradient estimate is then

⟨∇θ(DKL(p ∥ q̂; α) + λθ2)⟩ = ⟨∇θDKL(p ∥ q̂; α)⟩+∇θλθ2 = ⟨∇θDKL(p ∥ q̂; α⟩+ 2λθ . (16)

We pick a weak regularization λ = 0.005, allowing the optimization to produce selection probabilities
close to 0 or 1 (e.g. 0.01 or 0.99), but not close enough that the optimization suffers.

Discrete-Smooth Hybrid BSDFs. The above optimization can handle BSDFs that are hybrids of
smooth and discrete reflectances. Abusing mathematics a little bit, whenever a discrete component is
sampled, the smooth SD-tree PDF q(ωi)must be treated as zero⁷ (seeAlgorithm3), similar to how smooth
BSDF components are usually treated as zero in such cases.

Code. We provide pseudocode of the full MIS optimization—including Adam—in Algorithm 3. The
pseudocode also includes the implementation details that we discussed in the preceeding paragraphs. For
an actual implementationwithin theMitsuba renderer, we refer to our public code at https://github.com/
Tom94/practical-path-guiding.

10.6 Adjoint-Driven Russian Roulette and Splitting

Russian roulette is an important building block for making almost any path tracer efficient. Unfortu-
nately, path-throughput-based russian roulette typically has detrimental effects on guided path tracers,
because the throughput does not account for incident illumination (the adjoint) encountered upon path
completion. While it is possible to avoid such detrimental effects by entirely disabling russian roulette,
this comes with potentially significant extra computational cost.

Adjoint-driven russian roulette (and splitting) [Vorba and Křivánek, 2016] solves this issue by incor-
porating an estimate of the adjoint—the learned incident-radiance approximation L̃i—into the russian-
roulette decision. We use this scheme because of its increased efficiency and because of its easy imple-
mentation within a path-guiding algorithm that learns incident radiance. For details on adjoint-driven
Russian roulette and splitting we refer to Sec. 7.7.

10.7 Miscellaneous Implementation Details

In the following, we discuss miscellaneous implementation details of the PPG algorithm that are easy to
overlook but greatly improve its effectiveness.

Next-Event Estimation. Although path guiding is able to sample complex general illumination, it
often performs worse than next-event estimation (NEE) on direct illumination, especially whenNEE uses
an importance cache such as the one used in Hyperion [Burley et al., 2018]. Because of this, we enable
NEE and do not train the SD-tree with direct illumination from light sources that are sampled by NEE.
The SD-tree is therefore trained using all indirect illumination and only direct illumination from light
sources that are not sampled by NEE (e.g. emissive volumes).

Parameterization of Directional Distribution. There are a number of possible ways to param-
eterize the directional guiding distribution. We use world-space-aligned cylindrical coordinates for two
practical reasons. First, world-space alignment—as opposed to surface alignment—allows the usage of
the same distribution of incident radiance when there is high-frequency normal variation. Second, we
use cylindrical coordinates—as opposed to spherical coordinates—due to their area-preserving corre-
spondence to the surface of the solid sphere.

⁷Most guiding methods—including PPG—do not learn discrete components. However, if a discrete componentwas learned,
then it should not be treated as zero in this situation.
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Rapid Adaptation of the SD-tree to Large Scenes. It is common in production to encounter
vast scenes of which only a small portion is visible to the camera. For a path-guiding data structure to be
effective in such situations, it must rapidly adapt to the distribution of paths being traced. Although the
SD-tree does continually adapt to the distribution of paths, the amount of adaptationwithin each iteration
is relatively small. To address this problem, we perform a small number of 1-sample-per-pixel iterations
(e.g. 8) at the beginning of rendering. This has the effect of “initializing” the subdivision of the SD-tree to
match the camera frustum before it is used for path guiding in the remaining rendering process.

10.8 Remaining Issues and Future Work

In this section, we mention several known issues of PPG that we were not able to address or did not have
time to investigate yet. These remaining issues provide interesting directions of future work, both within
the context of PPG as well as in the pursuit of replacing PPG (or components of it) with better alternatives.

Subdivision of the SD-tree. In Section 10.4, we proposed to combat non-uniform learning of the
SD-tree using spatio-directional filtering. While this approach is effective at reducing the symptoms of the
problem—i.e. a bad, non-uniform incident-radiance approximation—it does not tackle its fundamental
causes, which are rooted in PPG’s suboptimal subdivision scheme. In the future it is worth investigating
alternative data structures such as the BSP-tree proposed by Herholz et al. [2019] (described in detail in
Section 11.5.1) or neural networks that internally learn a spatio-directional representation [Müller et al.,
2018].

Product Guiding. TheSD-tree can only learn to guide according to incident radiance, which limits its
practicality compared to alternative approaches that can guide according to the full product [Herholz et al.,
2018, 2016, 2019, Müller et al., 2018]. Although it is possible to sample from the product of the SD-tree
and a BSDF represented by Haar wavelets [Clarberg et al., 2005] or spherical harmonics [Jarosz et al.,
2009], such representations are difficult to obtain for rich, parametric BSDFs such as the Disney BSDF
[Burley, 2012] which is used in the Hyperion renderer.

Temporal Guiding. The guiding of motion-blur effects is difficult with PPG, because the motion can
cause large incident-radiance variation that is not captured by the SD-tree. AsMüller et al. [2017] already
suggested, it may be possible to simply add the temportal dimension to the spatial binary tree (making it
a 4-D spatio-temporal binary tree), but this is yet to be tested.

Volumetric Guiding. PPG performs poorly when used to guide volumetric path tracing. This is be-
cause of a number of reasons such as the lack of product guiding with the phase function and the lack
of guided distance sampling. Progress towards volumetric path guiding has been made by Herholz et al.
[2019] using a spatial data structure similar to our binary tree in combination with a directional paramet-
ric mixture model. Sebastian Herholz will discuss more details in Section 11.5.

Simple Light Transport. Lastly, there is still room for improving PPG under easy-to-render illumi-
nation. Even though our extensions achieve better results than vanilla PPG in difficult scenes (Figure 15,
top) and surpass unguided path tracing in some simple settings (e.g. in Figure 15, bottom), there are
remaining cases where unguided path tracing is superior. These are caused mostly by the 10–20% com-
putational overhead of the SD-tree and the discarding of all but the last 4 PPG iterations (around 6.25%
of all samples). It is therefore important future work to further improve upon the algorithm and to inves-
tigate the possibility of effective guiding of direct illumination that complements next-event estimation
for better overall efficiency.
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10.9 Conclusion

Our goal was to obtain a path-guiding algorithm that not only accelerates rendering of difficult light
transport, but also performs no worse than simple unidirectional path tracing under simple illumination.

To this end, we reviewed the “Practical Path Guiding” algorithm [Müller et al., 2017] and introduced
three extensions that helped us improve its effectiveness and robustness. First, we avoided discarding
large fractions of the samples by weighting them approximately proportional to their inverse variance.
Next, we improved the quality of the learned SD-tree by spatio-directional filtering of splatted radiance
estimates, and lastly, we showed how theMIS selection probability can be optimized to increase the overall
efficiency of guiding.

After that, we discussed a number of important details to consider when implementing PPG with
our extensions in a production environment. These include the combination of PPG with next-event
estimation, the use of adjoint-driven russian roulette, and various aspects of effectively utilizing SD-trees.

Unfortunately, all of this was not quite enough to make PPG strictly better than an unguided path
tracer under simple illumination. In some scenes—for example directly lit outdoor environments—
unidirectional path tracing sometimes outperformed our extended PPG by a small margin that is mostly
caused by the 10-20% computational overhead of the SD-tree and our discarding of all but the last 4 iter-
ations (around 6.25% of all samples). Nevertheless, our extensions significantly shrunk the gap between
both approaches while improving PPG in difficult situations beyond what it was capable of before.

Additionally, our extensions are not inherently limited to PPG. With minor modification, they are
also compatible with alternative guiding schemes [Vorba et al., 2014], other incident-radiance represen-
tations [Herholz et al., 2019, Müller et al., 2018, Vorba et al., 2014], and even different paradigms, such as
guiding in primary-sample space [Guo et al., 2018, Müller et al., 2018, Zheng and Zwicker, 2018] or path
space [Simon et al., 2018].

We are excited about the ongoing adoption of path guiding in movie production and look forward to
further progress that will be made in the field.
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11 VolumetricZerovarianceBasedPathGuiding
SEBASTIAN HERHOLZ, University of Tübingen

Figure 17: Path tracing of an optically densemedium (30minutes), showing both a complete ‘beauty’ ren-
der (S+V), and a render with only volumetric transport (V). Building on an approximate adjoint solution
of the incident and in-scattered radiance, our zero variance-based path construction forms near-optimal
decisions for guided collision distance sampling, directional sampling, Russian roulette and path splitting.
As such, our sampling methodology leads to significantly faster convergence compared to an unguided
path tracer with standard transmittance-based collision and phase function sampling.

11.1 Introduction

Recent work on path guiding in volumes Herholz et al. [2019] applies strict rules given by zero-variance
theory. Wewill demonstrate the importance of guiding all individual sampling decisions (directional, dis-
tance, Russian roulette or splitting) when aiming to reduce the variance of the MC estimator and will ex-
plain how parametric mixture models can be used to represent incident and in-scattered radiance needed
to guide these decisions. Furthermore, we will discuss details one needs to consider when implementing
path guiding in a production renderer such as Weta Digital’s Manuka.

Volumes and why are they complicated? Introducing volume into scenes and supporting the
solution of the correct volumetric light transport is a crucial part when modeling realistic scenes and
effects. Volumetric light transport happens in many different scenarios such as clouds, fog, subsurface
scattering and liquids. Unfortunately, integrating volumetric transfer into the rendering equation (RE)
introduced by Kajiya [1986], which is solved by the rendering system, increases its complexity. This in-
creased complexity can have a high impact in the efficiency of current rendering systems, especially unidi-
rectional path tracer, that increase the time needed until a rendering reaches a converged state. Especially
effects such as direct/indirect light shafts, dense high albedo media (e.g. clouds, skin) or volumetric caus-
tics are effects, which are hard to render with a simple uninformed/guided path tracer. In the recent years
many specialized techniques such as, equi-angular sampling (Kulla and Fajardo [2012]), joint-importance
sampling (Georgiev et al. [2013]) or dwivedi based zero-variance sampling (Křivánek and d’Eon [2014]
and Meng et al. [2016]), have been developed to optimize the solution of the volumetric rendering equa-
tion. Each of them is able to efficiently solve one specific case of the volumetric transport, but none of
them, or even their combination is able to resolve to an optimal sampling procedure for the complete
volumetric transport. Our volumetric path guiding approach attempts to overcome these limitations by
approximating the optimal sampling for the complete volumetric transport. The additional challenge
for generating paths in the present of volumes, is that they also need to solve the additional volumetric
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contribution Lm, which is added to the standard RE:

L(x, ω) = T(x, xs)Lo(xs, ω)︸ ︷︷ ︸
Ls(x,ω)

+

∫ s

0
T(x, xd)σs(xd)Li(xd, ω) dd︸ ︷︷ ︸

Lm(x,ω)

, (17)

where Ls describes the attenuated surface contribution Ls which is scattered from behind the volume. One
source of the increased complexity of the VRE is the fact, that solving the volumetric contribution added
the need of solving the integral of the in-scattered radiance Li along the ray ([0, 1]). The other is the fact
that the in-scattered radiance is again a volumetric transport quantity, that is evaluated by solving the
spherical integral:

Li(xd, ω) =
∫
S
f(xd, ω, ω′)L(xd, ω′) dω′. (18)

Compared to solving the surface based light transport, which only depends on making a directional
decision and termination at each surface intersection. Solving the volumetric transport adds four addi-
tional decisions (see Figure 11.1), that need to be made to the path generation process of a path tracer:

1. The scatter decision determines, whether the path should explore the volumetric contribution Lm
or the attenuated surface contribution Ls of the VRE.

2. If Lm is be explored the distance decision defines, where the next scattering event along the ray
should be generated.

3. The subsequent directional decisions at the new scattering position inside the volume defines how
the in-scattered radiance Li is explored.

4. To determine whether the path inside a volume should be continued or not a path termination
decision has to be made.

These four decisions are repeated recursively, until the generated path is terminated or leaves the scene.
Since making these four decisions in an optimal way would require prior knowledge about the solution of
theVRE itself, a commonway is tomake these decisions only based on the known local volume properties.
For more details about the commonly used process to sample volumes in production we refer the reader
to Novák et al. [2018] and Novák et al. [2018].

1. Scatter / no-scatter 2. Collision distance
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Figure 18: Visualization of the four different sampling decisions, which need to bemade when generating
a random path inside a volume.

Standard Sampling Techniques and Zero-Variance Theory
Using the zero-variance random walk theory as explained by Hoogenboom [2008] it is possible to derive
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the optimal PDFs and probabilities for making the previously introduced four decisions. It can be seen
as a strict framework, to make importance sampling decisions for the complete integrand of the VRE.
A path tracer, which makes all sampling decisions strictly based on this theory would lead to a zero-
variance estimator, which only needs to evaluate one sample per pixel to generate a converged image.
Unfortunately, these decisions rely on exact estimates of all volumetric transport quantities upfront, which
would imply already having a solution for the complete volumetric light transport we currently want to
solve. Especially the quantities for the incident radiance L and in-scattered radiance Li are important to be
known upfront and at each position and direction in the scene, to construct optimal sampling decisions.
Since this information is usually not available upfront, common sampling strategy neglect the influence
of the incident and in-scattered radiance and on samples based on the transmittance and on the scattering
behavior of the phase function. Figuratively speaking one could say that these sampling decisions assume
that both quantities L and Li are constant across the whole scene, and would resolve in a zero-variance
estimator, if and only if this assumption is true. Therefore, the variance of the commonly used volumetric
path tracer is related to the derivation of actual volumetric light transport of a scene to the assumption
of constant L and Li. As a consequence any biasing/guiding of the sampling decisions in the direction
of the optimal zero-variance ones will lead to a reduction in the variance of the random walk estimator.
The goal of our guided volume path tracing approach is to use local approximations of these quantities to
guide all four decisions in the direction of the optimal ones dictated by the zero-variance theory.

11.2 Volumetric Path Guiding

In recent years the concept of path guiding has proven to be a reliable method to reduce variance/error of
a rendering system for surface based light transport. Our volumetric path guiding approach, extends this
concept to also support guiding the path generation process in the present of participating media. Early
approaches of volumetric path guiding (Bashford-Rogers et al. [2012] and Pegoraro et al. [2008]) only fo-
cus on guiding the directional sampling decision. Due to the lack of supporting guiding based on the
product of incident radiance and the phase function, both methods are limited to only support guiding
for near isotropic volumes. Instead of just applying guiding to the directional sampling decisions, as done
when guiding surface based light transport, our approach considers guiding all four additional decisions,
which needs to be made, when sampling a random path inside a volume. Furthermore, our guided de-
cision are strictly related to the optimal zero-variance ones as described by Hoogenboom [2008], which
includes directional guiding based on incident radiance and phase function product. In the following sec-
tion we are going to show that guiding all four decision at once and that the strict relation to the optimal
zero variance theory is crucial, when trying to reduce the variance/error of a volumetric path tracer.

Conceptually our volumetric guiding approach is based on a similar guiding structure as used by re-
cent surface based guiding techniques (Vorba et al. [2014] and Müller et al. [2017] Section 10). Using a
spatial sub-division structure, such as a BSP-tree, we are able to store local approximations of the relevant
transport quantities used to guide our sampling decision. In case of the volumetric transport, these esti-
mates are spherical representations of the incident and the in-scattered radiance L and Li (Section 11.3).
A visualization of this structure is shown in Figure 11.2. Using this guiding representation, we are able
to derive the guided sampling decisions (Section 11.4). These guided decisions are based on the strict
rules of the zero-variance theory and cover all four sampling steps which need to be considered, when
generating a random path in the presents of a volume.

In the following sections we will first introduce the representation used by our approach to store the
spherical distribution of the needed transport quantities L and Li (Section 11.3). Then we will show how
these representations can be used to build guided sampling strategies that fulfill the requirements of the
zero-variance theory (Section 11.4.1, Section 11.4.2, Section 11.4.3). For each of these individual deci-
sions we will show the effect on reducing the error/variance of the final rendering and how this reduction
increases if they are combined. Since the crucial part of our guiding approach is the structure used to
represent the guiding estimates for L and Li, we will give detailed information about how such a structure
can be trained/learn using different strategies, such as photon based pre-processing step or the online
forward learning approach byMüller et al. [2017] (Section 10). We will also mention production relevant
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Figure 19: Left: Visualization of the (kD) tree for the spatial cache component. Right: A schematic and
false-color depiction of the directional caches for the incident and in-scattered radiance represented via
vMF mixtures (orange). The sample volume has a slightly forward-peaked phase function.

problems, which may arise, when integrating our approach in a production environment such as Weta
Digital’s Manuka(Section 11.5).

11.3 Volumetric Radiance Estimates

The key components of our volumetric guiding approach is the representation of the volumetric light
transport quantities needed to make make guided sampling decisions based on zero-variance random-
walk theory. Both the incident radiance L and the in-scattered radiance Li are quantities, which can be
defined as spherical functions for a given position x inside the volume. While L defines the incoming
radiance arriving at x from any direction ω, Li defines the amount of radiance, which is in-scattered into
a direction ω at the position x. Based on the characteristics of the volumetric light transport in a scene
L and Li can vary strongly based on the position and direction in the scene/volume, which can lead to a
large number of number of guiding distribution/caches, which needs to be stored to represent this char-
acteristics correctly. Therefore, the challenge in finding a suitable representation is not only the efficiency
of evaluating the needed quantity but also in the memory footprint needed to store one representation.
A compact representation of a spherical function can be achieved via a mixture of weighted simplified
spherical distributions such as von Mises Fisher (vMF) lobes. A vMF mixture model V is composed of a
set of K weighted lobes v:

V(ω |Θ) =
K∑
i=1

πi · v(ω | μi, κi). (19)

The parameter set Θ contains the weights {π1, ..., πK}, the mean directions {μ1, ..., μK} and precisions
{κ1, ..., κK} for each component (‘lobe’). Each vMF lobe is a normalized spherical distribution, rotation-
ally symmetric around its mean, with its spread being inversely proportional to κ. To represent the a
spherical distributions at different locations x inside a medium, the vMF mixtures V can described by
the spatially-varying set of parameters Θ(x). These sets can be stored in a BSP-tree structure similar as
the one used by Müller et al. [2017]. An important features of the vMF mixtures is, that they inherit the
features from the used vMF models, such as efficient sampling, analytical integration, convolution and
product calculation. The evaluation and these inherited features can be efficiently implement for multiple
components at once using vector instructions such as SEE (4) or AVX (8).
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11.3.1 Incident Radiance Estimate

To represent the incident radiance estimate L̃ using vMF mixtures one needs to scale the evaluation of the
normalized spherical distribution by the scalar irradiance (i.e. fluence) at x:

L̃(x, ω) = Φ(x) · VL(ω |ΘL(x)). (20)

Fluence is given byΦ(x) =
∫
S L(x, ω

′) dω′. Based on the source of the data used to fit the vMFmixture for
the incident radiance (Section 11.5.1) its value can be either determined directly from incident radiance
samples or via photon density estimation.

11.3.2 In-Scattered Radiance Estimate

Further exploration of the relationship between the incident radiance L and the in-scattered radiance Li
reveals, that Li is given by convolving the incident radiance spherically with the phase function (Equa-
tion 18). If the incident radiance is estimated by the vMF mixture VL the estimate for the in-scattered
radiance L̃i resolve to:

L̃i(x, ω) = Φ(x) ·
∫
S
f(x, ω, ω′)VL(ω′|ΘL(x)) dω′. (21)

Since phase functions are typically rotationally invariant they can be represented with one or more vMF
lobes. The convolution of two vMF lobes results in another vMF lobe, which can be calculated analytically
(see the Appendix of Herholz et al. [2019]), providing a highly efficient way to obtain the integrated in-
scattered radiance estimate:

L̃i(x, ω) = Φ(x) · VLi(ω|ΘLi),

VLi(ω) = (Vf ∗VL)(ω).
(22)

The convolution of a mixture with K components for the incident radiance and a mixture with L compo-
nents, representing the phase functions, leads to a mixture for the in-scattered radiance with K ·L compo-
nents. To avoid additional storage for this mixture and to support the usage of multiple differing phase
function it is possible to adjust the evaluation process of the vMF mixture to support the convolution
of the mixture on-the-fly with one vMF lobe. This adjustment leads to L calls of the adjusted evaluation
function of the incident radiance vMF mixture with K components.

Examples of our estimates compared to the ground-truth measurements are given in Figure 11.3.2.

11.4 Guided Sampling Decisions

Using the vMF representation of the incident and in-scattered radiance we are now able to derivemultiple
guided sampling decisions to cover the four decisions needed to generate a random path in the presence
of a volume. In the following sectionwewill introduce the zero-variance PDFs/probabilities for all guided
decisions and show how one can guide the path generation process based on approximations of the op-
timal ones. Since the all our guided decisions try to approximate the complete optimal PDFs, it is worth
noting that, in the hypothetical case, that the used guiding estimates for the incident and in-scattered
radiance and the vMF mixture representation of the phase would be exact, our guided sampling would
converge to the optimal zero-variance one.

11.4.1 Guided Product Distance Sampling

The sampling of the next scattering location along a path segment includes the two different sampling
decisions. The first one decides, if the scattering event should explore the volume contribution Lm or
the surface contribution Ls from behind the volume. If the decision is made to explore the volume, the
distance along the path segment inside the volumes has to be sampled. Fortunately these two decision
can bemerged into a single distance sampling decision, which either samples a distance to a point x inside
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Figure 20: Our adjoint solution estimates for the volumetric radiance quantities L and Li for two positions
below the surface of the Buddha statue. The center column shows the ground-truth spherical function of
L and Li evaluated using path tracing with 100k samples per pixel. The right column shows our estimates
L̃ and L̃i fitted from 1k photons. Note that since Li is an integrated quantity, its estimate is much more
reliable than that of L.

the volume, or the sampled distance passes the volume and resolves to the distance to the point xs on the
nearest surface behind the volume. The zero-variance PDF for this joint distance sampling is:

pzvd (d | x, ω) =
T(x, xd) · σs(xd) · Li(xd, ω)

L(x, ω)
, (23)

where, the denominator is the sum of the attenuated surface contribution and the volumetric radiance
contribution (Ls + Lm = L).

Incremental Guided Product Distance Sampling
To guide the combined distance sampling decision in the sense of the optimal zero-variance one as defined
in Equation 23, one needs to consider not only the in-scattered radiance Li but also the incident radiance
L, that arrives at the beginning of the path segment at x. Using our guiding representation (Section 11.3)
we are able to estimate these quantities (L̃ and L̃i) and construct a distance sampling methods, which is
able to approximate the optimal one from Equation 23. Our proposed samplingmethod is inspired by the
simple procedure of tabulating the path segment, that intersects the volume by separating the distance into
multiple bins (d1, ..., dN). The size of these bins can be either be defined by the sizes of the spatial structure
of our guiding estimates or regular tracking based on the local volume properties. Under the assumption
that the in-scattered radiance and the volume properties (e.g. σt and σs) are constant inside one bin it
is possible to evaluate the contribution of each bin to the incident radiance arriving at x. Using these
contributions for each bin and by evaluating the incident radiance at the end of the volume intersection
it is possible to build a discrete CDF and sample a bin according to it. The probability of sampling one
specific bin di is then based on Equation 23.

Unfortunately this simple approach has one major drawback, which comes from the fact that the
complete volume has to be traversed and that the contribution of all bins has to be evaluated. This is
necessary to calculate the normalization factor of the CDF, which is needed to derive the probability of
each bin. This can lead to massive computational overhead, especially in production when dealing with
large scenes or dense media, where most of the transport happens close to the entry point of the volume
(e.g. subsurface scattering of skin). To overcome this limitation we developed an incremental sampling
approach, which is able to use the local estimates L̃ and L̃i to make subsequent decision, if a scattering
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Figure 21: Our incremental technique (Algorithm 4) steps along the ray, proposing candidate bins ac-
cording to the current PDF estimate and the estimated probability mass along the remainder of the ray
without explicitly sampling it. This approach is especially beneficial for optically densemedia, since on av-
erage fewer steps are taken due to the rapidly decreasing transmittance function with regard to increasing
d.

event should be generated inside the current bin di or not. This incremental nature of the algorithm
bounds the needed memory access and evaluations to number of bins, which were passed before the
scattering event is created. The ability to build this incremental approach is based on the fact, that the
probability to scatter in a bin that starts at di and ends at di+1 mainly depends on the ratio between the
in-scattered radiance and the incident radiance arriving at the distance di:

Pi(D ≤ di+1) ≈
1− T(di, di+1)

σt(di)
· σs(di) · L̃i(di)

L̃(di, ω)
. (24)

This probability can be derived, when setting x in Equation 23 to the distance di (since we already reach
this point without generating a scattering event) and then integrate Equation 23 from di to di+1. Since it
is assumed that σs(x) and Li(x) are constant inside the bin only the transmittance needs to be integrated,
which resolves to the first factor of Equation 24.

Theprobability of not generating a scattering event in the previous steps, until we reach the bin starting
at di, resolves to:

P(di < D) =
i−1∏
j=0

1− Pj(D ≤ dj+1), (25)

and can be incrementally updated while stepping over the preceding bins. To sample the final position
inside a selected bin, we use a similar approach as presented by Kulla and Fajardo [2012], which enables
sampling based on the transmittance inside a given boundary [di, di+1].

The performance of this proposed distance-sampling method mainly depends on the quality of the
estimates of L and Li and the resolution of the spatial cache structure. In the hypothetical case, that
these estimates are correct and the bin sizes are small enough, so that the assumption of a constant Li
and σs holds, the method converges to optimal zero-variance sampling decision from Equation 23. To
compensate to for sub-optimal decisions, which caused by inaccurate estimates we combine our incre-
mental distance with commonly used transmittance distance sampling using the one-sample MIS model
(Veach [1997])and the selection probability αd = 0.5. The final PDF for sampling a distance d using these
combined methods is therefore:

pd(di+1|ri) = αd · pz̃vd (di+1|ri) + (1− αd) · pstdd (di+1|ri), (26)

where pz̃vd represents our approximated version of the optimal zero-variance PDF. The pseudo code of our
incremental guided distance sampling is listed in Algorithm 4. For more information and further details
about the derivation and a method to increase the stability of the sampling, we refer the reader to the
related section in the original paper of Herholz et al. [2019].
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Some examples of the effects of our guided distance-sampling approach is shown in Figure 25 and
Figure 25.

Algorithm 4: Algortihm for incremental guided distance sampling.
1 function guidedDistanceSampling(x, ω, dMax)
2 // x …starting position inside or at the beginning of the medium
3 // ω …direction in which the walk continues
4 // dMax…distance to the next surface intersection
5 di := 0
6 pdf := 1
7 scatter := False
8 while not scatter and di < dMax do
9 xi := x− diω

10 [L̃, L̃i] := lookUpEstimates(xi, ω) // Sec. ??
11 [σt, σs] := getMediumCoefficients(xi)
12 di+1 := getDistanceToNextBin(xi, ω)
13 P := calcBinProbability(L̃, L̃i, σs, σt, di, di+1) // Eq. 24
14 ξ := getRandomValue( )
15 if ξ ≤ P then
16 // current bin selected
17 pdf ∗ = P
18 [d, pdfBin] := sampleDistanceInBin(di, di+1, σt)
19 pdf ∗ = pdfBin
20 scatter := True
21 else
22 // continue tracking
23 pdf ∗ = (1− P) // Eq. 25
24 di := di+1

25 return [scatter, d, pdf]

no guiding distance guiding dist+dir guiding

Figure 22: Comparison of different sampling methods (256)spp: standard distance and directional sam-
pling (left), our guided distance sampling (middle) and our guided distance and directional sampling
(right). In the scene a dense backward scattering volume is illuminated by a small light source from be-
hind. While the standard distance sampling approach generates early scattering events inside the dense
volume, our guided product distance samples avoids these early scattering events and passes through
the dense media towards the light source. Adding directional product guiding further reduces the er-
ror/variance by guiding the scattering events in the direction of the light source and not back to the
camera.
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no guiding distance guiding

Figure 23: Comparing standard distance sampling (middle) against our guided distance sampling (right)
in a scene with a thin volume illuminated by spotlight sources (1024spp). While the standard transmit-
tance based approach has a low probability in generating scatting events inside the light shafts, our guided
product distance sampling approach generates more scattering events inside these regions. Since our ap-
proach is also applied for multiple scattering events, this more optimal decisions also reduce the variance
in the multiple scattering component of the volumetric light transport.

11.4.2 Guided Product Directional Sampling

Guiding the directional sampling decision plays an important role in reducing the error of a volumetric
path tracer. After the decision is made, where inside the medium a scattering event is generated, it is
important that the in-scattered radiance at this point is explored in the right direction. Commonly the
directional sampling is governed by the phase function, yet the phase function is frequently a poor ap-
proximation of the actual propagation of light. As an example one can consider a dense medium with
an highly backward scattering phase function. This medium is mainly lit from behind the the medium,
towards the camera, by a strong light source. Phase function based sampling would mainly sample direc-
tions that point away from the light source, which leads to a high variance estimates. Another example is
a scene with isotropic fog withmany light shafts. In this example the advantage of being able to generate a
sample inside the light shaft, using our guided product distance sampling, is worthless, when the followed
directional sampling decision does not explore the direction towards the source of the light shaft.

Our approach of guiding the directional sampling decisions inside a volume follows from trying to
optimally importance sample the in-scattered radiance integral by sampling ad direction based on the
product of the incident radiance and the phase function. This sampling behavior directly corresponds to
the optimal zero-variance PDF:

pzvω (ωi+1|ωi, xi+1) =
f(ωi, ωi+1)L(xi+1, ωi+1)

Li(xi+1, ωi)
. (27)

To achieve such a sampling we utilize the fact, that the product of two vMF lobes form one vMF lobe,
which can be constructed efficiently in closed form. This, in turn, allows us to also construct products
of vMF mixtures in closed form. We can therefore use our vMF representations of the incident radiance
and the phase function of the volume to generate a product vMF mixture. The product mixture V⊗ is
calculated based on the mixture VL of the incident radiance and the mixture Vf of the phase function:

Vf(ω)VL(ω) = (Vf⊗VL)(ω) = V⊗(ω). (28)

A new random scattering direction ω is obtained by importance-sampling this product mixture following
the stable procedure presented by Jakob [2012]. This approach can be seen as a direction extension of the
product guiding method for surfaces introduced by Herholz et al. [2016]. In Contrast to the Gaussian
mixtures used by Herholz et al. [2016] we use vMF models, which better correspond to the spherical
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characteristics of the volumetric transport quantities. For the exact formulas of how the product mixture
is calculated and how to deal with vMF lobes that represent forward or backward scattering features of a
phase function we refer the reader to the Appendix of the original paper by Herholz et al. [2019].

Similar to our guided distance sampling approach we use multiple importance sampling (MIS) be-
tween our product mixture and phase-function sampling to account for inaccuracies in the guiding es-
timates. The combined PDF for sampling a new direction in the volume including our approximated
zero-variance one pz̃vω and the PDF for standard sampling based on the phase function is:

pω(ωi+1|xi+1, ωi) = αω · pz̃vω (ωi+1|xi+1, ωi) + (1− αω) · pstdω (ωi+1|xi+1, ωi). (29)

The probability of sampling based on our product mixture is defined by the balance heuristic weight αω.
In practice we found that a conservative value of αω = 0.5 leads to be reliable enough to compensate for
potential inaccuracies in the fits, but still leads to significant decreases in the error of the final renderings.

An example of the effect of our guided directional-sampling approach is shown in Figure 11.4.2. In
Figure 11.4.2 we demonstrate the importance of being able to guide according the product of the inci-
dent radiance and the phase function. Especially in dense media and phase functions with higher mean
cosine values, the neglection of the product can lead to even worse sampling behavior as when using no
directional guiding at all.

distance guidingno guiding directional guiding dist+dir guiding

(a) (b) (c) (d)

Figure 24: Comparing different volume samplingmethods (256spp): standard distance + directional sam-
pling (a), only guided distance sampling (b), only guided directional sampling (c) and the combination of
guided distance and directional sampling (d). While in this setup, guiding the distance sampling decision
only has a minor impact on the variance/noise of the render, guiding the directional sampling decision
has a large impact on reducing the error/variance. Nevertheless the best result can be achieved, when
both guiding methods are combined.

11.4.3 Guided Russian Roulette and Splitting

Russian roulette (RR) and splitting are two important tools, which can be used to influence the perfor-
mance of a rendering system. While the target of RR is to increase the efficiency of the render, to be able
to evaluate more samples at a given time budged, splittingmainly focuses on reducing the error generated
by the render, by reducing the variance of Monte-Carlo process. Nevertheless setting up these two tech-
niques can be quite complicated and non-optimal settings can either lead to an increase in variance (e.g.
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phase function product guiding no product guiding

Figure 25: Comparing different directional sampling methods (256spp): standard based on the phase
function (left), our guided directional product (middle) and a guided version just based on MIS between
the phase function and the incident radiance (right). Especially in dense volumes with high mean cosine,
being able to sample according the product becomes important.

early path termination using RR) or can negatively impact the efficiency of the renderer (e.g. to aggres-
sive splitting). Another challenge is that the optimal settings for RR and splitting are often not global and
can be scene or even dependent on the local position inside a scene. This is also true when dealing with
volumetric light transport and therefore guiding these decisions plays an important role in optimizing a
rendering system.

Russian Roulette
The concept of Russian roulette is to increase the efficiency of an estimator by terminating paths, which
have a potentially low contribution to the final estimate (pixel value). To avoid the costly evaluation of
these low contributing path, they are terminated stochastically based on a termination probability PRR.
The equivalent survival probability for a path is q = 1−PRR. The goal of this probability is to estimate the
future/potential contribution of a path when its construction and evaluation is continued. Figuratively
speaking the main question to answer is:“Will the path hit a light source in the future? And if so, will the
contribution of this light source propagated through the path high enough to effect the estimate?” If this
decision is optimal, RR would terminate paths, which got lost in space, by non-optimal former sampling
decisions, and continue paths which are on their way to the light sources that mainly contribute to the
final pixel value. This optimal termination keeps the additional introduced variance minimal, so that the
increased efficiency leads to an overall lower variance at an equal time budget. Usually this decision is
mainly based on the current throughput of the path or on the local scattering albedo. The intuition behind
this heuristic is, that a path with low throughput or scattering albedo will also result in a low contribution
to the final estimate, even if it will hit a light source in the future. While this assumption often holds, it can
also lead to rather sub-optimal decision, which lead to early path terminations causing a large increase in
the variance of the estimator (e.g. causing fire fly noise). Examples for this invalidation are scenes, where
the contribution mainly comes from long path lengths or subsurface scattering with dense media, where
multiple bounces inside the object occur before the path exits the object and then reaches a light source. If
in these cases the paths are terminated before they hit the light sources the probability of even generating
any valid path, which contributes to the pixel value is low, which leads to a high variance.

To avoid these problems the optimal survival probability can be defined as:

q =
E[R]
I

, (30)

where E[R] is the expected contribution of the path, when its evaluation is continued, and I is the solution
of the final estimate (e.g. pixel value). The goal of guided RR is to estimate this optimal probability by
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using approximations of the future path contribution E[R] and the finial pixel value I. There are multiple
ways to approximate the value for the final pixel estimate Ipix. For example, in a progressive rendering
framework the value can be estimates using a denoised version of the already rendered progression.

Another method which is used by Vorba et al. [2014] and Herholz et al. [2016] estimates Ipix by di-
rectly querying the guiding caches. For each pixel a primary ray is traced until the first diffuse intersection,
while all light transport quantities (e.g. Lo, Li) are queried from the caches along the way. Figure 11.4.3
gives an example of such an estimate, which is achieved by ray marching through the volume and inte-
grating the in-scattered radiance estimates L̃i. The estimation of the path contribution depends on the

Figure 26: Comparison of the pixel estimates Ipix (generated by accumulating the in-scattered ra-
diance from our estimates) to the ground-truth solution. Through the use of a weight window
Vorba and Křivánek [2016] even this rough estimate is sufficient to guide our guided RR and splitting.

type of RR which is performed. When dealing with a volumetric path generation process it is possible
to terminate the path in two different stages leading to two different RR approaches, which are based on
two different probabilities. The first directional RR termination is done after a distance sampling step,

xj

 ωj

P=1-q

aj L

a) Distance RR (termination) c) Directional RR (termination)

xj

 ωjaj'Li
xj+1 P=1-q'

Figure 27: Volumetric guided RR. A volume RR decision (marked red) can either terminate the sampling
of a new distance (left) or the sampling of a new direction (right).

which leads to a termination of the directional sampling step (Figure 11.4.3 right). The second distance
RR decision can be made after a directional sampling step, which leads to a termination of the subsequent
distance sampling decision (Figure 11.4.3 left). The survival probabilities qdir and qdist for these two RR
decisions are based on the two different estimates for the future path contributions E[R]dir and E[R]dist.
Using the estimate L̃ and L̃i from our guiding caches, these quantities can be estimated in combination
with the current path throughput a(R). The final survival probabilities for the directional and distance RR
are:

qdir(R) =
Edir[R]
Ipix[R]

and qdist(R) =
Edist[R]
Ipix[R]

. (31)

Detailed information about how to estimate the expected contributions E[R]dir and E[R]dist and their
derivation can be found in the Section 6.3 of the original paper by Herholz et al. [2019]. To account for
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inaccuracies in the estimation of the path contributions and the pixel estimate Ipix the To account for
inaccuracies in our estimates of the volumetric light transport quantities used to calculate the expected
contributions and for inaccuracies in the pixel estimate we use the same weight window approach to de-
termine q as Vorba and Křivánek [2016].

Splitting
The goal of splitting is to reduce the variance of an estimator by further exploring regions, where the
primary estimator used to explore a part/quantity of the light transport equation has a high change to
introduce a large error the final pixel value. This variance reduction is achieved by splitting the path at
the current state its generation process and continue exploring the specific transport quantity (e.g. L or
Li) with K individual random paths.

If this splitting factor is derived optimally it leads to a major variance reduction of the final estimator,
since the error introduced by each subsequent primary estimator is minimized. On the other hand, too
aggressive/large splitting factors lead to a large number of additional path, which have to be evaluated by
the render. If these additional path do not lead to a variance reduction at the subsequent estimator, the
efficiency of the rendering system is decreased.

Guided splitting minimize the error of final pixel value, caused by paths that are sampled with a strat-
egy that underestimated the actual contribution of the path. To identify these paths guided splitting uses
the same survival probability used for the guided RR decisions (see Equation 30). In the case that a path
is generated with a lower probability then its expected contribution the ratio of this contribution resolves
to be greater one. To avoid that the error of the sample caused by the sub-optimal decisions used to gen-
erate the current path does not further increase, the evaluation of the local quantity of the light transport
equation (e.g. L or Li) is explored with more samples.

xj

 ωj
aj L

#  ≈q

b) Distance splitting d) Directional splitting

xj

 ωjaj'Li

#  ≈q'xj+1

Figure 28: Volumetric guided splitting. A volume split (marked green) can generate both new sampled
distances (left) and directions (right).

Similar to RR guided splitting can also be applied at two different stages of the randompath generation
process. The directional splitting is the opposite of directional RR and splits a path at a the position xi+1
intomultiple sub-paths. This splitting leads to an average ofK = q individual estimates of the in-scattered
radiance at xi+1.

The distance splitting is the counterpart to distance RR and splits paths by generating multiple scatter-
ing events along the current ray segment ri inside the volume. Its intention is to reduce the error of the
estimate of the incident radiance arriving at xi from the direction ωi.

Asmentioned byVorba and Křivánek [2016] guided splitting can only act as a post variance reduction
technique. Since it is apply after a sub-optimal sampling decision is made, it can not remove the variance
introduced by a former decision afterwards. It only can bound the variance of the final estimator by trying
to minimize the error introduced by all subsequent sampling decisions.

An example of the effects of guided RR and splitting is presented in Figure 11.4.3.

11.5 Details on the integration into a rendering system

The previous sections have shown the potential of path guiding for volumetric light transport and how
it can be an efficient way to reduce the variance of a random walk path tracer. While the shown results
focused on an implementation with a unidirectional path tracer Vorba et al. [2014] has shown that it is
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no RR:  465spp guided RR: 1500spp guided RR+S: 1340spp

Figure 29: Comparing equal time renderings (45min) of a guided path tracer using: no RR or splitting
(left), guided RR (middle) and guided RR and guided slitting (right). Guided RR reduces the error/noise
of the final rendering by increasing the number of samples being evaluated at equal time. Splitting leads
to an addition decrease of the error/noise by reducing the variance of the path tracer by splitting path
with a potential high error/variance.

strait forward to also apply path guiding to bidirectional methods and that these also benefit a lot from it.
Most of our presented methods to guide each of the sampling decisions are rather simple (e.g. directional
guiding, guided RR) and an integration into a common or production rendering system would not be
complicated. Nevertheless, the effectiveness and stability of the complete systems rises or falls with the
quality an reliability of the vMF mixture fits for the incident radiance estimates and the vMF mixture
representations for the phase functions of the used volumes. If these estimates and representations are
not reliable enough the effect of volumetric path guiding vanishes, or can even lead to results with higher
variance, compared to traditional sampling. On the other hand, since all our guided sampling decisions
try to approximate the complete optimal PDFs based on the zero variance theory the more precise the
estimates are the stronger will be the effect of the variance reduction in the final renderer. Compared to
the current path guiding techniques for surfaces, where the potential variance reduction is not only based
on the quality of the incident radiance estimates but also on how well the weighted sum of the PDFs of
the BRDF and the incident radiance can approximate their product.

In the following section we are going to focus on aspects of how to estimate the vMF mixtures and
what the necessary, important and practical considerations are, when integrating the system in a produc-
tion oriented environment such as Weta Digital’s Manuka or a scientific renderer such as Mitusba (Jakob
[2010]).

11.5.1 Training/Fitting Incident Radiance Distribution

The following section will take a closer look on how the guiding caches (spatial and directional) can be
trained using a data generated by a rendering system. Two different ways to generate the training data
have been experimented on. The first method is the one presented in the paper by Herholz et al. [2019]
and is based on a pre-processing step using a photon tracer. As a given number of photons is traced
throughout the scene and then used to train the incident radiance field. The second method is based
on the forward learning approach introduced by Müller et al. [2017] and which is explained in detail in
Section 10. The basic idea is to gather data after each progression (sample iteration per frame) and update
the guiding cache after a given amount of progressions (e.g. 2, 4, 8, ...).

Since there is only aminor difference in the overall procedure of build the guiding structure from these
different methods, both methods are considered in the following paragraphs. At the end of this sections
the pros and cons of both methods are compared and what needs to be considered when applying them
a production environment.
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Photon vs Forward Learning of vMF mixtures
To fit the vMFmixture for the incident radiance estimates, data from both a photon traced pre-processing
step or radiance samples of the forward learning approach can be used. Both methods have their pros
and cons. While the photon based pre-processing step distributes a fixed number of photon according to
the characteristics of the light transport in the scene, the forward learning approach bypasses the need of
any pre-processing time and gives the user a more or less interactive feedback. The quality of the samples
thereby increases by every training iteration, since they benefit form use of path guiding. Usually the
number of samples collected by the forward learning approach in each training step doubles with each
iteration. Unfortunately, the current implementation of our EM fitting algorithm for the vMF mixtures
requires to keep all these samples inmemory when updating the estimates for the incident radiance distri-
bution. This can quickly lead to a large additional memory overhead by the time the number of samples
per iteration increases. On the other handwe observed that the vMFmixture are able to quickly fit reliable
estimates even after a small number of training iterations and can do this even with a small amount of
samples. Therefore, a way to compensate for the additional memory consumption is to update the vMF in
smaller update cycles (e.g. every 32spp), or when collected samples reach fixed memory bound. Another,
yet not investigated approach, would be the use of an online-EM algorithm similar to the one used by
Vorba et al. [2014]. Since, we haven’t found the optimal solution yet, and having a simple and reliable
solution to learn vMF mixtures, by using the forward learning approach would be preferred solution, we
see this as an interesting and important area of future work.

Training Data
The data used to fit the guiding distributions can either be generated in a pre-processing step via photon
mapping (see. Herholz et al. [2019]), or generated on the fly by the renderer using a forward based learn-
ing approach, that generates samples based on the path traced during the current render progression (see.
Müller et al. [2017]). As a result both methods starts with a set of samples that are distributed across the
scene. The number of samples may vary (e.g. 5M, 50M or even upto 250M) but the main data, which
needs to be stored per sample is quite similar:

Position of the photon or incident radiance sample in the scene. This position is usually stored in world
space coordinates.

Direction from which the photon arrived at the sample position or the direction in which the random path
went to generate the incident radiance sample. This direction in usually also stored in world space.

Energy mainly depends on the type of samples. For photons this energy contains the power contributed
by photon sample, while for radiance samples the energy is the actual incident radiance estimate
from the direction of the sample.

In addition it is also useful to store the PDF of the sampled direction (in the case of forward-learning)
and the throughput of the rest of the path until it reaches the emitting light source.

The main difference between photons and radiance samples lies in how they are representing the
incident radiance distribution. For photons the radiance distributions depends on the power and the
density of photons in each direction. The spherical distribution of the samples therefore also plays a role
in estimating the incident radiance distribution. For incident radiance samples the important quantity is
the estimated incident radiance of the sample direction. The role of the distribution of the samplesmainly
ensures the spherical domain of the incident radiance field and its major features are explored. These
differences need to be considered, when fitting the distribution for the incident radiance. Fortunately
for fitting our vMF mixtures this only leads to a minor of the fitting algorithm (see Section 11.5.1). The
following equation shows an example of how the energy of a radiance sample at the jth scattering event
of a random path R can be calculated:

L̃(xj, ωj) =
M−1∏
l=j+1

al(rl)︸ ︷︷ ︸
throughput

· Le(xM, ωM−1)︸ ︷︷ ︸
emitted radiance

. (32)
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For simplicity we only considered the case without next-event estimation (NEE).
The appearance of high variance sample (aka. fire flies) can have a high influence in the shape of the

fitted incident radiance distribution. These high variance samples usually give a hint that the contribution
from one direction has an higher importance then expected by the used sampling procedure. While for
the forward learning approach by Müller et al. [2017], these high variance samples are used to explore
the directional regions after the next training iteration in more detail, it is still important to distinguish
between two types of fire flies. Thefirst one is caused by paths, whichwere generatedwith a lowprobability
and ended up hitting a bright light source. Since the contribution form the path was underestimated by
the sampling procedure the already high energy from the light source gets boosted by the low sampling
PDF and generates the firefly. These kind of high variance samples are exactly the ones, that identify
directional regions, that are currently under-sampled and therefore an important information for the
forward-learning approach.

The second type of fireflies occurs, if a path was sampled with a series of extremely low probability
sampling decisions (e.g. low RR survival probabilities). Even when the light source at the end of the
paths only emits a very low amount of energy the subsequent low probability decisions from the path
generation process raises the contribution of the light source so much that a firefly evolves. These types
of high variance samples are the ones that are undesirable when trying to estimate the incident radiance
distribution. The can quickly mess up the approximated distribution and stir the complete exploration of
the guiding process in wrong directions.

Clamping the radiance/power values for each sample would solve the problem of the fireflies having
to much influence in the incident radiance distribution fits. On the other hand it would also damp the
exploration of important, yet under-sampled regions, which is an important part of the forward-learning
approach. Our solution to this problem is to clamp the throughput (e.g. to 10) of the radiance samples
while keeping the actual emitted radiance from the light source untouched. In this way samples of high
variance which are generated by a bright light source will still have a high contribution and therefore will
be further explored and the ones that reached a dark light source will have a lower contribution and will
only be further explored in more detail if this low contribution is high relative to the other samples.

Spatial Subdivision
In the following paragraph we explain, how the spatial structure for our guiding caches is build and
explain some potential problems, that needs to be considered when building such a structure. In our
volumetric guiding approach we use a similar spatial structure as Müller et al. [2017] (see Section 10),
which is based on a BSP-Tree. The task of the spatial structure is to provide the guiding algorithm with
the necessary guiding estimates (e.g. vMF mixtures of the incident radiance distributions) for each point
in the scene. Ideally the spatial guiding structure should fulfill the following criteria:

• Cover the complete region of interest (ROI) of the scene which contributes to the final rendering.
• Return a valid guiding representation at each position in the respective ROI.
• The approximated directional distribution of the incident radiance in a leaf node represents the

actual incident radiance function.
• The spatial structure adjusts to the characteristics of the light transport in the scene (e.g. shadows,

caustics).

The first point is important since it ensures that the path guiding can be applied along the complete gen-
eration process of the path. The ROI defines the bound of the BSP-tree which subdivides the scene into
smaller regions/nodes. Each of these leafs contains the directional guiding information for the local re-
gion covered by it. For small to medium sized scenes using the bounding box of the complete scene or all
volumes contained in the scene is a safe estimate for the ROI. Unfortunately, if the ROI is too big the spa-
tial subdivision structure is to deep, which can lead to a large computational overhead, when querying a
tree node. On the other hand, if the ROI is too small, the randompath can leave the region, where guiding
can be used, and the path generation process would fall back to the common sampling decisions. Since
these decisions are most likely to not be non-optimal, they could lead to a large increase in the variance
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of the estimator. Another problem occurs, when the bounding box of the scene can not be estimated
upfront, for example, if the scene contains an infinite medium. In this cases we approximate the ROI by
taking the bound of all samples used for training the guiding representation (for forward learning the
bound of all samples of the first training iteration). To ensure that these samples really cover the needed
region, and to consider the fact, that the guided paths my explore a larger region the bound can be scaled
by a small factor (e.g. 1.5 or 2).

After the bound of the guiding region is set, the next important step is to subdivide the space based on
the samples collected in the pre-processing step or from the previous training iteration. The important
thing to consider, when building or updating the spatial subdivision, is, that in the end each leaf node
needs to have enough valid data tomake a useful estimate about the directional distribution of the incident
radiance. To ensure this we propose small adjustments to the original subdivision procedure presented
byMüller et al. [2017]. Similar to their approach we split each node until it contains nomore than a given
number of samples (e.g. N = 12K). To ensure that all these samples actually contain valid data we only
consider valid samples, meaning that the power/incident radiance estimate is greater zero. Since photons
always contain a power greater than zero, this mainly effects the case of forward-learning.

The second adjustment we propose to not use an uninformed strategy, which splits strictly in a XYZ
order and always in the middle. This approach can quickly lead to leaf nodes, which contain a low num-
ber of valid samples or more often even none at all. These empty nodes will then not be able to fit/learn
any guiding representation and the guiding algorithm may falls back to the common approach with a
potential higher variance, which leads to patches of higher variance in the rendered image. A way to
avoid this is to track the mean and variance of the positions of all valid samples of a node and split the
node a the mean position in the dimension of the highest variance. When using a photon based approach
this subdivision method ensures that the number of samples inside a leaf node is guaranteed to almost
being close to N/2. In a forward learning approach it increases the probability, that in the next training
iteration the number of valid samples in the new leaf node is close to N (if the number of samples per
pixels is doubled). For volumetric path guiding this extension is important, especially in scene with com-
plex bounding objects and sub surface scattering (e.g. Buddha scene). Here the simple splitting method
leads to empty nodes outside the object, which usually are not considered by the volumetric path guiding
algorithm. Unfortunately, some of these empty nodes can cross the boundary of the statue a little bit
leading to none or an insufficient guiding information in this area. During the rendering process these
areas become visible because of high variance noise of the common sampling approach the algorithm felt
back to.

While the previously introduced extensions ensure that the first two important characteristics of a
guiding structure are fulfilled, it is hard to guarantee the third and the fourth one and we still consider
it as an open problem. At the moment in all cached based guiding algorithms the data used fit the direc-
tional distribution of the incident radiance is dependent on the maximum number N of samples (valid
or invalid) allowed per leaf node. This number is a heuristic guess, based on the assumption that a high
enough number of samples will also increase the probability that enough valid information about the
incident radiance distribution is contained inside a leaf node. On the other hand a too large value for N
prohibits the spatial structure to refine and therefore get more local estimates for the incident radiance.
In practice we observed, when using the forward learning approach, that in complex scenarios, where the
main contribution of the illumination of a scene comes from hard to sample sources (complex caustics,
refracted physical correct sun models), the number of samples in the scene containing information about
this source is rather low. If N is too small and the tree subdivides too fast, these samples are missed and
the contribution of these sources is neglected by the used path guiding method. Fortunately this prob-
lem mainly occurs in extremely complex lighting scenarios, and are often not happening in common
scenarios, but we believe it is still important to point out their existence.

Mixture Model Fitting
In the this paragraph we are going to explain, how the set of samples clustered inside a node of the
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spatial structure can be used to fit the vMF mixture representation of the incident radiance estimate for
the corresponding node.

Similar as for the Gaussian mixture models (GMMs) used by Vorba et al. [2014] the vMF mixture
models can also be fitted via an expectation maximization (EM) algorithm. The goal of EM is to fit the
components of the mixture in a way that the represent the distribution of samples used for the fit. To
compensate for the fact, that the directional distribution of the our samples (e.g. photons or incident
radiance samples) does not correspond to the actual shape of the spherical incident radiance sample, we
also use the weighted EM extension of Vorba et al. [2014]. By adding weights to each samples their overall
distribution is biased to simulate a distribution based on the incident radiance function. For further
details about the derivation of the weighted EM and how it can be adjusted to the vMF mixtures we refer
the reader to the papers of Vorba et al. [2014] and Herholz et al. [2019].

The only difference between fitting the vMF mixture from the different sample types is the way, how
the weight for each sample is calculated. For photon based samples, where the directional distribution is
almost according the incident radiance distribution the correction weight is the power corresponding to
the photon:

wj = Φp(xj, ωj). (33)

In the case of the sample being an incident radiance estimate form the forward learning approach the
weight has two functions, it first must compensate for the fact, that the directional distribution of sam-
ples does not correspond with the actual distribution of the incident radiance, and second it has to bias
the samples to simulate this distribution. The later is done by using the incident radiance estimate as
weight, while first is achieved by dividing the estimate by the PDF of sampling this direction. The result-
ing weight for a sample based on the incident radiance estimates from the forward learning approach
therefore resolve to:

wj =
L̃(xj, ωj)

pω(xj, ωj)
. (34)

Using these kind of weights for fitting the vMF mixture for the incident radiance estimates, leads to a
mixture, where the weight of each component directly corresponds to the relative amount of fluence/flux
represented by that component.

While the representation of the incident radiance distribution via vMF mixtures and their features
to build the product or convolution distribution with the phase function are a necessity for making guid-
ing the volumetric transport possible, their fitting based on EM comes with a computational overhead
compared to the QuadTree representation of Müller et al. [2017]. This overhead scales linearly with the
number of samples per mixture, the number used mixture components or used EM training iterations.
The two ways to keep the computational overhead low is either to keep the numbers of samples, compo-
nents or training iterations low, or to optimize the code of the vMF evaluation and EM fitting. For the
latter we made extensive use of implementing all algorithms using current vector engines such as SSE,
AVX or AVX512. This way we are able to evaluate 4, 8 or even 16 components at the same time. Since
the exponential function is used quite often and is relative expensive to evaluate, we use the same fast
approximate version of it as provided by code of evaluating the GMMs by Vorba and Křivánek [2016]. In
additionmaking sure that all the data used for the fitting lies inmemory in a cache friendly way also helps
increasing the efficiency of the EM code.

In practice we found that for volumetric light transport between 8 and 16 components are sufficient
to represent the incident radiance distribution, and that the EM ends up with a stable fit at around 20−30
iterations.

Estimating Fluence
The fluence/flux of a distribution is an important quantity for our volumetric path guiding approach. Its
main purpose is to scale the vMF mixtures representing the distributions of the incident and in-scattered
radiance, so that their queried values represent the estimates of the volumetric light transport quantities.
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It is assumed that the fluence/flux in constant in each node of the spatial structure. Its value can be
estimated from the samples used to fit the incident radiance distribution for each node. Based on the
use learning methods and the corresponding type of samples used to fit the distributions the formula for
estimating the fluence changes.

For radiance sample the estimation of the fluence is rather simple and can be calculated by using the
incident radiance estimates and the sampling PDF for the direction of the samples to build aMonte-Carlo
estimator for the fluence:

Φ(x) =
1
N

∑ L̃(xn, ωn)

pω(ωn)
. (35)

It is worth noting that this formula assumes that the samples also contain the ones, where L̃ = 0. If only
the valid samples are stored it is also necessary to track the ratio for each leaf node of the valid and overall
drawn samples and correct the fluence estimate by multiplying it with this. In the case that samples are
generated via a photon tracing a volumetric density estimation step has do be performed to convert the
power of the photons into fluence. For this, it is necessary to know the volume covered by the photons.
Unfortunately, the volume of the nodes of the spatial structure are not sufficient enough for this task. The
space that is covered by a node of the structure my only cover a part of the actual volume and therefore
would overestimate the actual volume of the photons. A simple way to estimate the volume, which might
not be the optimal one, is to use the one of the smallest bounding box around the samples. More advanced
method would be to approximate the convex hull of the samples but where not further evaluated by us.
The formula for estimating the fluence from a set of photon samples is given by:

Φ(x) =
∑ Φp(xn, ωn)

V(x1, ..., xN)
(36)

It is worth noting, that the fluence/flux calculation using photons for surfaces is based on the surface
area covered by the photons, which might the a reason, why it is not straight forward to merge volume
and surface photons to build uniform incident radiance guiding representation for surface and volume
guiding.

11.5.2 Phase Function Representation

A crucial part of our volumetric path guiding approach is the representation of the phase function via a
vMF mixture. The quality of the representation influences each guiding decision, since it is needed for
sampling directions according the product distribution of the phase function and the incident radiance
and to estimate the in-scattered radiance for the distance sampling and directional splitting procedures.
In this section we are going to explain our method to robustly fit various types of phase function in a pre-
processing step, while later we will explain how the representation can be extended to support varying
parameter for a given phase function model. The sections ends with a discussion about the problematic,
which can arise in complex production environments, where the shape of the phase can be unknown
upfront.

Fitting
In practice a phase function can be a combination ofmultiple lobes, ofmultiple phase function type/models
(e.g. Henyey-Greenstein, Rayleigh, Cornette-Shanks). To fit a vMF mixture for a given phase function
we applied a small pre-processing step at the beginning of the rendering process. For each volume in the
scene we fitted a vMF mixture suing a non-linear optimization framework such as Ceres Agarwal et al.
[2016]. Using a set of N uniform samples over azimuth angle θ we fit the vMF mixture parameter Θf for
that phase function:

argmin
Θf

N∑
n=1

[
Llog(f(ωn, ...),V(ωn,Θf))

]2
(37)
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Whenfitting a phase function, one has to be careful in selecting the right loss function for the optimization,
so that all the features of the phase function are represented well enough by themixture used for sampling
it. Considering the standardHenyey-Greenstein (HG) phase function, which shape on the first sight looks
quite similar as a vMF lobe, it has a long tail, which leads to an important back scattering characteristic
even for high mean cosines. The used loss function therefore, needs to take care to reliably represent this
long tails, while still focusing on the peak of the phase function. We found that following loss function
lead vMF mixture parameters,that can robustly represent a variety of phase function:

Llog(d,m) = log(d+ ε)− log(m+ ε), (38)

where

ε = 0.0001 ·max(d1, ..., dN). (39)

This loss function is similar to the logarithmic version of the relative loss function, that resolves to zero,
if d/m = 1. The additional epsilon is used to damp the focus of the optimization on the tail of the phase
function, in cases that the phase function is highly forward/backward scattering (e.g. HG g > 0.95). In
our experiments using a mixture of 3 to 4 vMF lobes is enough to represent a variety of different phase
functions. In the case that the mean cosine values of a given model vary through the volume, and the
number of mean parameters of a mixture of phase function lobes is low (e.g. 1 to 2) it is possible to
leverage the manifold representation of the mixture parameters, as introduced by Herholz et al. [2018] or
to tabulate the parameter space in the pre-processing step.

Problematic Production Cases
The pre-processing step relies on the fact that the shapes of used phase functions in a scene is known
upfront, and that their number is limited, to be able to fit the vMF mixture representations in usable
time or memory budget. In cases, where mixtures of M lobes and their parameters (e.g. mean cosines,
mixture weights) are defined as heterogeneous volume parameter or even as procedural function it is
hard to predict all possible combinations upfront. One solution would be to fit a vMF mixture for each
possible lobe type and its mean cosine parameter, and then build a mixture vMF mixtures on the fly.
Unfortunately, this would quickly increase the number of components needed to represent one instance of
a phase function (e.g. 4xM), which has a direct impact on the efficiency of our guided sampling decisions.
A proper solution for this problem is an open question, which needs further investigation.
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12 Guiding inPathSpace
JOHANNES HANIKA, Weta Digital

In this section we will take the ideas presented in the last section, in particular volume sampling and
Russian roulette, and relate them to guiding of full paths in path space [Simon et al., 2018]. Guiding new
samples along full guide paths instead of marginalised distributions which only guide low dimensional
parts at a time transparently includes all aspects of the high dimensional path space such as path length,
BSDF, incident illumination, and free distances in volumes. It also allows us to use simpler, uni-modal
functions to represent a continuous PDF around guide samples. However both marginalised caches and
full paths come with advantages and drawbacks.

12.1 Introduction

We have seen in the previous sections how it is important to sample all aspects of a transport path to
effectively reduce variance. This naturally includes incident illumination, BRDF or phase function, and
distances in volumes. Combining these from caches which store 2Dmarginals (for instance only incident
illumination or only BSDF) may incur multiplication of these stored signals. This may turn out to be
expensive, but in full fledged production renders sometimes compute on that scale can still be hidden
between the dominating memory access costs caused by shading or ray tracing. In any case it will incur
another reduction of accuracy: both the incident illumination and the BSDF fit will come with errors,
which accumulate when multiplying the signals.

There are also more subtle aspects to consider when sampling a new path: the input samples know
what kind of event happened. In the simplest case, this may be a reflect vs. a transmit event at a dielectric
surface, for instance the cornea of a character’s eye. Since the Fresnel terms tell us that most light will be
transmitted, it is almost always a good idea to transmit a lot of light, to render a noise free image of the iris
behind the cornea. However, there are a few rays that captured the direct highlight on the cornea. These
may remain noisy for a long time in practice when importance sampling the low value of the reflecting
Fresnel term. Previous samples carry the information whether reflect or transmit was a good idea at a
specific point in path space. When projecting down such information to 2D directional distributions, it
is often lost.

Similar holds for Russian roulette: how long should a path be in certain regions of the scene? This
information is contained in the set of previously traced paths. Resampled by their throughputs they rep-
resent a mixture of path lengths with spatial resolution which tells us exactly how long we expect a path
to be.

This leads us to another path guiding method, based on caching all this information in its entirety:
path space guiding [Simon et al., 2018]. In this approach, no information about previous guide samples
is discarded, full paths are retained to construct a sampling density from. To make the memory usage
tractable, we need to select guide samples only where necessary, i.e. where the underlying base sampler
(such as simple path tracing with next event estimation) does not yet yield a low variance estimator.

12.2 Overview

In fig. 30, an example integrand f(X) is shown in blue, and the existing MC estimator draws samples
from the PDF shown in orange, which we denote as the unguided PDF pu(X). More formally, we are
approximating the integral using the estimator:

⟨I(X)⟩u =
f(X)
pu(X)

. (40)

In this example, the PDF pu represents the left smooth mode of the integrand well, but misses the other
features (two more modes). Thus we construct the additional guided PDF pig(X) (shown in green) which
is iteratively refined for i = 0, 1, ..., and captures the differences between the integrand f(X) (blue) and
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Figure 30: 1D illustration of path space guiding (reproduced from [Simon et al., 2018, Fig. 2]): parts of
the integrand (f, blue) are well represented by a PDF (pu, orange). We wish to approximate the difference
between the integrand and the orange PDF. Guiding records (Yi, red points) are iteratively placed and
then used to reconstruct a continuous guided PDF (pg, green). These two PDF are then combined with
multiple importance sampling (balance heuristic) to yield a good Monte Carlo estimator for the integral.

(a) (b) (c) (d)

Figure 31: Schematic overview of the guiding method employing full paths, reproduced from
[Simon et al., 2018, Fig. 3]. We start with all path traced trajectories, depicted in (a). From these, we
select the ones that are most poorly sampled by the underlying Monte Carlo estimator, shown in (b). For
each of these guide paths, we compute anisotropic reconstruction kernels at every path vertex, to fill in
the gaps between the samples. This is visualised in (c). To sample from this structure, we first pick a guide
path and then successively sample path vertices according to the reconstruction kernels (d). Evaluating
the PDF requires to sum up the PDF associated with all guide paths that may create the given path.

the unguided PDF pu(X) (orange). The converged guided PDF is shown in fig. 30, right. Eventually, we
want to combine these two PDFs using multiple importance sampling (MIS). More precisely, we will be
using a single-sample model with the balance heuristic [Veach, 1998, chapter 9] resulting in a combined
estimator with a mixing weight u, i.e.

⟨I(X)⟩ig =
f(X)

u · pu(X) + (1− u) · pig(X)
. (41)

The guided PDF will be constructed incrementally and with every iteration i we adjust pig(X) to further
reduce the variance of eq. (41).

Intuitively, we proceed as illustrated in fig. 31. We begin by letting p0g(X) ≡ 0 and effectively sampling
X using only pu(X) (fig. 31a). From the paths X, we select only a few new guide paths Y motivated by im-
portance sampling: we first determinewhether a path is an outlier causing high variance (viadensity-based
outlier rejection [DeCoro et al., 2010]) and only from these we pick the N with the highest contribution
to the estimate in eq. (41). We will iteratively add batches of guide paths Yj sampled from both pu and
the current guided pdf pig to the cache, and once they are added we keep them unchanged until the end.
This is illustrated in fig. 31b and detailed in section 12.3.

The guide paths Yj are turned into a continuous function using a Gaussian reconstruction kernel
(fig. 31c). We use a high-dimensional neighbour search to determine large enough reconstruction kernels
to close the gaps between paths and to achieve smooth coverage. One challenge is that the PDF evaluation
can become slow in Gaussian mixture models. Therefore we use truncated Gaussian kernels to be able to
cull away samples efficiently.

To sample from the cache, we first select a guide path Yj using a cumulative density function (CDF)
built on path weights wj which are updated every iteration i to reflect the new guided PDF pig(X).Then
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Figure 32: Placing new samples far apart from other samples is essentially a dart throwingmethod, which
can be used to generate blue noise samples. While the guide path sampling does not explicitly search for
minima, it increases the probability in these areas: a sample marked in red will have low PDF, resulting
in a firefly sample if the function evaluation is high. Such a sample is likely to spawn a new guide path in
the next iteration.

we sample a new path vertex xv following the Gaussian reconstruction kernel (Σ, μ)v around every guide
path vertex yv (fig. 31d), starting at the sensor (see section 12.4).

In the subsequent iteration i + 1, we draw samples from both pu(X) and pig(X), with probabilities
u and 1 − u, respectively. No matter which technique was used, new samples will be considered to be
recorded as new guide samples for the next iteration, depending on their contribution ⟨I(X)⟩ig.

Because pg(X) does usually not cover the full domain, we require pu(X) to form a complete unbiased
estimator, in particular ∀X : f(X) > 0 ⇒ pu(X) > 0. This will not be the case for the guided PDFs
pig(X) which may be zero in areas where the original estimator is deemed sufficiently good already. We
chose the balance heuristic to combine the PDFs as it is close to optimal [Veach, 1998, chapter 9]. The
precise choice of combination heuristic does not affect the final sampling quality much, as the convex
combination of both PDFs pu(X) and pig(X) adapts to be proportional to f(X).

12.3 Selecting guide paths

Guide paths are expensive: first, we need to store them, so we want to keep their overall number to a
minimum. Second, PDF evaluation scales somewhat with the number of overlapping Gaussians. Fortu-
nately the culling due to the truncated Gaussians usually works really well. Some of this is due to how the
Gaussians are constructed: to span only a certain number of neighbours.

Still we want to carefully select guide paths. This is done by looking at a screen space projection of the
noise: density-based outlier rejection (DBOR) [DeCoro et al., 2010] can tell us how lonely is a sample in
screen space. This is different to being lonely in high dimensional path space (in a way every sample will
be lost in space there). As it happens this is exactly what matters for the final image.

In 2D image space this has an interesting connection to ditheringmethodswhichwill create blue noise
patterns [Ulichney, 1993]: Figure 32 shows a 2D illustration. Sampling driven by Gaussians around ex-
isting samples will gather probability mass around existing samples. In areas right in the middle between
samples, there will be a low probability density. If the function value is high in these areas, the probability
to sample an outlier here is increased. This means that, in a stochastic sense, such a sample placement is
similar to dart throwing.

12.4 Sampling new paths

Sampling paths is the easy part in this setup. Conceptually we can simply choose a guide path, and then
successively sample the next transport vertices starting from the eye. It is possible to support volumes
natively in this context, but there are a few details as to including the BSDF for (near) specular events
(please see the original paper by Simon et al. [2018]).
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Figure 33: Illustration reproduced from [Simon et al., 2018, Fig. 7]. For most accurate sampling of xv,
we compute a covariance matrix (5×5 in this example, since xv−1 is a surface point and xv is in a volume).
One block in the matrix, Σ11, expresses how xv should be distributed according to the collected data from
the guide paths (shown in black). Because we already have a fixed previous vertex xv−1, we derive the
conditional of the 5 × 5 Gaussian accordingly, resulting in a new distribution N[Σv, μv] (blue). If there
is a non-zero covariance between the coordinates of the guide path vertices yv and yv−1 the conditional
Gaussian Σv will typically be a lot more focused than Σ11. In this example, disregarding the covariance
would amount to sampling according to Σ11 withmuch larger spread, as illustrated in (b). Using Σv results
in higher quality samples which aremore likely to be valid paths, and faster PDF evaluation due to culling.

One key aspect is that the Gaussian stored on a transport vertex is 4D (in the surface-surface case).
That is, it includes information about covariance between the current vertex on the surface and the next
vertex that we are about to sample. This facilitates some parallax correction: if we arrive at the surface
some distance away from the vertex of the guide path, the 4D distribution will be conditioned on the
current vertex. This shifts the mean of the remaining dimensions and overall results in a more precise
distribution (see fig. 33). In particular, it avoids the grid artifacts which can easily arise in the other
guidingmethods which store a directional distribution per voxel (see section 10.4 where the same artifact
is avoided by different means).

12.5 Determining the size of the Gaussians

The guide paths are equipped with Gaussian distributions at every vertex. These are usually 4D (from a
point on the surface to another point on the surface). To construct them, we need to fit the distribution
to a few samples. We can use the neighbouring guide paths for this, using a high dimensional nearest
neighbour search: every vertex adds three dimensions. This can work well, but has two pain points: one,
a high dimensional neighbour search can be slow and is hard to accelerate. We can usually cull based on
a few things (bounding boxes of truncated Gaussians, path lengths and configurations etc), but building
acceleration structures hardly pays off for 1000s of paths with 100s of dimensions. Second, the results
depend on the number of neighbours we choose to use. The estimation is stable with aminimum number
of neighbours (such as 10 or 20) but will change if we go to the 100s. If we go too far, we run the risk of
evaluating neighbours which do not belong to our unimodal lobe around the guide path any more.

12.6 Discussion

While, as discussed in the previous section, the estimation of the distribution based on neighbours has
some issues, it is clearly preferable over using analytic derivatives: neighbours are an estimate of the real
data in the surroundings, including BSDF, displacement, curvature, complex shadowing, etc.

This guiding technique comes with a built-in dependency on density-based outlier rejection. Similar
to variance-based reweighting (see section 10.3) this makes sure we can always present intermediate im-
ages to the user, and not throw away information for successive progressions. TheDBOR-as-post-process
approach also makes it possible to show noise free results at all stages. This comes at the cost of bias, but
since the data is still around, an unbiased estimate can be constructed if needed.
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Figure 34: Equal-time comparisons of path tracing (PT) and path space guided path tracing (gPT). The
insets show PT and guided PT with outlier removal and therefore PT misses lighting effects it can not
render efficiently (e.g. caustics). In all scenes guided PT robustly identifies the part of light transport
that can not be handled by PT efficiently and improves upon this using guided sampling only for these
parts. As a side effect, we obtain an interesting separation into a smooth/low contrast image (unguided
contribution) and a sharp/high contrast image (guided contribution), which could be denoised separately.

The second aspect is that DBOR only selects paths which are hard to sample without guiding. This is
similar to section 10.5 and means the method can stay cheap where it’s not needed.

Sampling from a fixed guide path is very fast. Evaluating the Gaussians touches very little data and
is straight forward to do. On the flip side, evaluating the PDF requires to touch all guide paths with
overlapping Gaussians. This needs careful implementation and efficient culling to result in fast execution.

Keeping the full paths around is the most basic way of storing information about previous samples.
There is clearly nothing important lost in the process, because all data is still there. This makes it simple
to visualise what is going on for debugging, or reproject guide paths for a different frame in an animation.
This is also facilitated by another nice property of the path guiding cache: we can hand over just a path
for inclusion in the cache, without a PDF. It will be evaluated based on how likely it is to construct such
a path given the sampling density that is already contained in the cache. This way, we can even evaluate
invalid samples which come from resampling the last frame, or from an adjoint transport operator (or
even hand drawn samples if there is an application for that).

Another advantage of storing full paths is that this representation transparently includes all aspects
of sampling: path length (Russian roulette), BSDF, distances in volumes, reflect vs. transmit choice etc.

Unfortunately exactly this full-path property also has a downside. This is especially apparent for mul-
tiple scattering: here the exact high dimensional path configuration plays not much of a role. It is only
important to exit the volume towards the light source. This is an instance of the curse of dimensionality:
we would require a number of guide paths growing exponentially with the number of dimensions. This
quickly becomes intractable if the sampling space cannot be broken down into small and directed prob-
lematic regions. These become essentially low-dimensional and can be approximated by full paths very
well. Unfortunately this is a big assumption to make, so the technique cannot be switched on by default.
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13 OpenProblemsandFutureWork
JIRÍ VORBA, Weta Digital
JOHANNES HANIKA, Weta Digital

We believe that there is still an unexplored potential of guiding methods to further reduce number of
samples required for rendering clean images. One of the main goals of this course is to identify the most
pressing problems and share them with the research community and thus to enable further exploration
of path guiding. We also discuss the possibility of combining some of these methods so that the best of
them would form more efficient algorithms.

Types of cache records Themethods we explored in this course use a variety of different encoding
schemes to represent the distributions of samples. Even the dimensionality of such directional caches
is subject for further research: is a 2D incoming light field enough, if multiplied by BSDF? Can it be
unified to include distance sampling, too? 4D distributions have been shown to give some benefits when
using the conditional distribution to interpolate for different shading points. Using all dimensions in a
path completely brings some benefits (for instance for Russian roulette) but quickly exhausts the limits of
tractable computation due to the curse of dimensionality.

Accuracy of cached distributions Naturally we are striving for the most accurate importance
sampling scheme and thus want a perfectly precise representation of the 4D plenoptic function. However,
this is a much harder problem to solve than just computing an image: the image is 2D and very limited
in extent. The scene may be huge and computing a 4D function everywhere in it is computationally
more demanding than ”just” computing an image. Thus, there has to be a trade off here, learning just
what is necessary to converge the image faster. This opens the questions what the appropriate basis for a
distribution would be: Gaussian mixtures, radial basis functions, or neural networks?

Can we switch it on by default? One argument for adoption in production environments is
whether the technique can always stay switched onwithout the user worrying about the implications. This
means the technique needs to be invisible, i.e. not make easy scenarios slower by bloaty computations in
the background. It also means there should not be any edge cases where it performs much worse than
other techniques.

Raw speed In general we can invest a lot of time in computing good samples in offline rendering.
Many of our integration problems are so hard that we cannot hope to converge them with standard sam-
pling methods. That is, we require many thousands of samples, at which point the dreaded 1/

√
N con-

vergence rate of Monte Carlo has stalled completely in practice. Here, only higher quality sampling with
lower standard deviation can help. There are, however, two things to keep in mind. First, we are search-
ing for an always-onmethod that will transparently do the best it can without slowing down simple cases.
Second, the square root tells us that we cannot bemore than quadratically slower in generating samples at
half the standard deviation. Some guiding methods can be so expensive that a simpler but worse method
will outperform them by drawing many more samples in the same time.

One future direction heremight be to explicitly pick sampling techniques based on their performance
based on the scene at hand.

Generality To result in a maintainable solution that will find adoption in practice, we want to find an
algorithm that is simple yet general: that is, we don’t want to code special cases for volumes, for surfaces,
for dense scattering, for godrays in thin fog, if possible. This is to date the weakest point of the toolset we
have at our disposal for rendering. Only once this issue is resolved can we start to think about low level
optimisations.
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Robustness All adaptive sampling techniques run the risk of being worse than uniform sampling in
some cases: if important areas remain undiscovered, but a spike is detected somewhere, the algorithm
might explore only this spike, neglecting the task of discovering the other areas. Most guiding methods
take explicit countermeasures against this case by always mixing in some portion of independent sam-
pling, regularising the distributions in the beginning, or by employing the first and the second moment
(for instance by summing the variance to the importance of some slot [Vévoda et al., 2018]).

Neural Path Guiding Neural networks applied to surface path guiding were demonstrated to yield
state-of-the-art quality [Müller et al., 2018], albeit at prohibitive computational cost that requires high-
end GPU(s) for practical performance. To bridge the performance gap and to increase quality further, it
would be interesting to investigate alternative approaches [Chen et al., 2018, Huang et al., 2018], cheaper
neural networks [Keller et al., 2019], and more advanced optimization algorithms [Izmailov et al., 2018].
Additionally, it would be interesting to apply the neural approach to previously difficult higher-dimensional
settings such as temporal path guiding for motion blur and distance sampling in volumes with non-
exponential transmittance [Bitterli et al., 2018].
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